Modelling net radiation at surface using “ in situ” netpyrradiometer measurements with artificial neural networks
► Neural networks can be use to replace net radiometers by a model of the net radiation. ► The proposed methodology is suitable to estimate net radiation from meteorological variables. ► A sensitivity analysis has been done to obtain the importance of the each variable. The knowledge of net radiatio...
Gespeichert in:
Veröffentlicht in: | Expert systems with applications 2011-10, Vol.38 (11), p.14190-14195 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14195 |
---|---|
container_issue | 11 |
container_start_page | 14190 |
container_title | Expert systems with applications |
container_volume | 38 |
creator | Geraldo-Ferreira, Antonio Soria-Olivas, Emilio Gómez-Sanchis, Juan Serrano-López, Antonio José Velázquez-Blazquez, Almudena López-Baeza, Ernesto |
description | ► Neural networks can be use to replace net radiometers by a model of the net radiation. ► The proposed methodology is suitable to estimate net radiation from meteorological variables. ► A sensitivity analysis has been done to obtain the importance of the each variable.
The knowledge of net radiation at the surface is of fundamental importance because it defines the total amount of energy available for the physical and biological processes such as evapotranspiration, air and soil warming. It is measured with net radiometers, but, the radiometers are expensive sensors, difficult to handle, that require constant care and also involve periodic calibration. This paper presents a methodology based on neural networks in order to replace the use of net radiometers (expensive tools) by modeling the relationships between the net radiation and meteorological variables measured in meteorological stations. Two different data sets (acquired at different locations) have been used in order to train and validate the developed artificial neural model. The statistical results (low root mean square errors and mean absolute error) show that the proposed methodology is suitable to estimate net radiation at surface from common meteorological variables, therefore, can be used as a substitute for net radiometers. |
doi_str_mv | 10.1016/j.eswa.2011.04.231 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901713112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417411007585</els_id><sourcerecordid>901713112</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-7db5fadb238f593f5cc7d9fafaf07bc3d0a9ec61f9a1c336c56e1b8fa6ecdbc13</originalsourceid><addsrcrecordid>eNp9kT1OxDAQhS0EEsvPBajcQZPgiTfxRqJBiD8JRAO15dhj8LJJFtthtR0HgctxEhyWGk3xivneSPMeIUfAcmBQnc5zDCuVFwwgZ9O84LBFJjATPKtEzbfJhNWlyKYgprtkL4Q5YyAYExMy3PcGFwvXPdMOI_XKOBVd31EVaRi8VRrpEMb198cndR0NLg7fH18jvVz7ke9bjOhpiyoZsMUuBrpy8YUqH5112qlFogf_K3HV-9dwQHasWgQ8_NN98nR1-Xhxk909XN9enN9lmldlzIRpSqtMU_CZLWtuS62Fqa1Kw0SjuWGqRl2BrRVozitdVgjNzKoKtWk08H1yvLm79P3bgCHK1gWd_lUd9kOQdYoBOECRyJN_yRQXsLoAKBNabFDt-xA8Wrn0rlV-LYHJsQ05l2MbcmxDsqlMbSTT2caE6d13h14G7bDTaJxHHaXp3X_2H1H1mXk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1701092115</pqid></control><display><type>article</type><title>Modelling net radiation at surface using “ in situ” netpyrradiometer measurements with artificial neural networks</title><source>Elsevier ScienceDirect Journals</source><creator>Geraldo-Ferreira, Antonio ; Soria-Olivas, Emilio ; Gómez-Sanchis, Juan ; Serrano-López, Antonio José ; Velázquez-Blazquez, Almudena ; López-Baeza, Ernesto</creator><creatorcontrib>Geraldo-Ferreira, Antonio ; Soria-Olivas, Emilio ; Gómez-Sanchis, Juan ; Serrano-López, Antonio José ; Velázquez-Blazquez, Almudena ; López-Baeza, Ernesto</creatorcontrib><description>► Neural networks can be use to replace net radiometers by a model of the net radiation. ► The proposed methodology is suitable to estimate net radiation from meteorological variables. ► A sensitivity analysis has been done to obtain the importance of the each variable.
The knowledge of net radiation at the surface is of fundamental importance because it defines the total amount of energy available for the physical and biological processes such as evapotranspiration, air and soil warming. It is measured with net radiometers, but, the radiometers are expensive sensors, difficult to handle, that require constant care and also involve periodic calibration. This paper presents a methodology based on neural networks in order to replace the use of net radiometers (expensive tools) by modeling the relationships between the net radiation and meteorological variables measured in meteorological stations. Two different data sets (acquired at different locations) have been used in order to train and validate the developed artificial neural model. The statistical results (low root mean square errors and mean absolute error) show that the proposed methodology is suitable to estimate net radiation at surface from common meteorological variables, therefore, can be used as a substitute for net radiometers.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2011.04.231</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Biological ; Errors ; Estimates ; Mathematical models ; Methodology ; Modelization ; Net radiation ; Neural networks ; Radiometer ; Radiometers ; Trains</subject><ispartof>Expert systems with applications, 2011-10, Vol.38 (11), p.14190-14195</ispartof><rights>2011 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-7db5fadb238f593f5cc7d9fafaf07bc3d0a9ec61f9a1c336c56e1b8fa6ecdbc13</citedby><cites>FETCH-LOGICAL-c365t-7db5fadb238f593f5cc7d9fafaf07bc3d0a9ec61f9a1c336c56e1b8fa6ecdbc13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0957417411007585$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Geraldo-Ferreira, Antonio</creatorcontrib><creatorcontrib>Soria-Olivas, Emilio</creatorcontrib><creatorcontrib>Gómez-Sanchis, Juan</creatorcontrib><creatorcontrib>Serrano-López, Antonio José</creatorcontrib><creatorcontrib>Velázquez-Blazquez, Almudena</creatorcontrib><creatorcontrib>López-Baeza, Ernesto</creatorcontrib><title>Modelling net radiation at surface using “ in situ” netpyrradiometer measurements with artificial neural networks</title><title>Expert systems with applications</title><description>► Neural networks can be use to replace net radiometers by a model of the net radiation. ► The proposed methodology is suitable to estimate net radiation from meteorological variables. ► A sensitivity analysis has been done to obtain the importance of the each variable.
The knowledge of net radiation at the surface is of fundamental importance because it defines the total amount of energy available for the physical and biological processes such as evapotranspiration, air and soil warming. It is measured with net radiometers, but, the radiometers are expensive sensors, difficult to handle, that require constant care and also involve periodic calibration. This paper presents a methodology based on neural networks in order to replace the use of net radiometers (expensive tools) by modeling the relationships between the net radiation and meteorological variables measured in meteorological stations. Two different data sets (acquired at different locations) have been used in order to train and validate the developed artificial neural model. The statistical results (low root mean square errors and mean absolute error) show that the proposed methodology is suitable to estimate net radiation at surface from common meteorological variables, therefore, can be used as a substitute for net radiometers.</description><subject>Biological</subject><subject>Errors</subject><subject>Estimates</subject><subject>Mathematical models</subject><subject>Methodology</subject><subject>Modelization</subject><subject>Net radiation</subject><subject>Neural networks</subject><subject>Radiometer</subject><subject>Radiometers</subject><subject>Trains</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kT1OxDAQhS0EEsvPBajcQZPgiTfxRqJBiD8JRAO15dhj8LJJFtthtR0HgctxEhyWGk3xivneSPMeIUfAcmBQnc5zDCuVFwwgZ9O84LBFJjATPKtEzbfJhNWlyKYgprtkL4Q5YyAYExMy3PcGFwvXPdMOI_XKOBVd31EVaRi8VRrpEMb198cndR0NLg7fH18jvVz7ke9bjOhpiyoZsMUuBrpy8YUqH5112qlFogf_K3HV-9dwQHasWgQ8_NN98nR1-Xhxk909XN9enN9lmldlzIRpSqtMU_CZLWtuS62Fqa1Kw0SjuWGqRl2BrRVozitdVgjNzKoKtWk08H1yvLm79P3bgCHK1gWd_lUd9kOQdYoBOECRyJN_yRQXsLoAKBNabFDt-xA8Wrn0rlV-LYHJsQ05l2MbcmxDsqlMbSTT2caE6d13h14G7bDTaJxHHaXp3X_2H1H1mXk</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Geraldo-Ferreira, Antonio</creator><creator>Soria-Olivas, Emilio</creator><creator>Gómez-Sanchis, Juan</creator><creator>Serrano-López, Antonio José</creator><creator>Velázquez-Blazquez, Almudena</creator><creator>López-Baeza, Ernesto</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7QO</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20111001</creationdate><title>Modelling net radiation at surface using “ in situ” netpyrradiometer measurements with artificial neural networks</title><author>Geraldo-Ferreira, Antonio ; Soria-Olivas, Emilio ; Gómez-Sanchis, Juan ; Serrano-López, Antonio José ; Velázquez-Blazquez, Almudena ; López-Baeza, Ernesto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-7db5fadb238f593f5cc7d9fafaf07bc3d0a9ec61f9a1c336c56e1b8fa6ecdbc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Biological</topic><topic>Errors</topic><topic>Estimates</topic><topic>Mathematical models</topic><topic>Methodology</topic><topic>Modelization</topic><topic>Net radiation</topic><topic>Neural networks</topic><topic>Radiometer</topic><topic>Radiometers</topic><topic>Trains</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geraldo-Ferreira, Antonio</creatorcontrib><creatorcontrib>Soria-Olivas, Emilio</creatorcontrib><creatorcontrib>Gómez-Sanchis, Juan</creatorcontrib><creatorcontrib>Serrano-López, Antonio José</creatorcontrib><creatorcontrib>Velázquez-Blazquez, Almudena</creatorcontrib><creatorcontrib>López-Baeza, Ernesto</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology Research Abstracts</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geraldo-Ferreira, Antonio</au><au>Soria-Olivas, Emilio</au><au>Gómez-Sanchis, Juan</au><au>Serrano-López, Antonio José</au><au>Velázquez-Blazquez, Almudena</au><au>López-Baeza, Ernesto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling net radiation at surface using “ in situ” netpyrradiometer measurements with artificial neural networks</atitle><jtitle>Expert systems with applications</jtitle><date>2011-10-01</date><risdate>2011</risdate><volume>38</volume><issue>11</issue><spage>14190</spage><epage>14195</epage><pages>14190-14195</pages><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>► Neural networks can be use to replace net radiometers by a model of the net radiation. ► The proposed methodology is suitable to estimate net radiation from meteorological variables. ► A sensitivity analysis has been done to obtain the importance of the each variable.
The knowledge of net radiation at the surface is of fundamental importance because it defines the total amount of energy available for the physical and biological processes such as evapotranspiration, air and soil warming. It is measured with net radiometers, but, the radiometers are expensive sensors, difficult to handle, that require constant care and also involve periodic calibration. This paper presents a methodology based on neural networks in order to replace the use of net radiometers (expensive tools) by modeling the relationships between the net radiation and meteorological variables measured in meteorological stations. Two different data sets (acquired at different locations) have been used in order to train and validate the developed artificial neural model. The statistical results (low root mean square errors and mean absolute error) show that the proposed methodology is suitable to estimate net radiation at surface from common meteorological variables, therefore, can be used as a substitute for net radiometers.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2011.04.231</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4174 |
ispartof | Expert systems with applications, 2011-10, Vol.38 (11), p.14190-14195 |
issn | 0957-4174 1873-6793 |
language | eng |
recordid | cdi_proquest_miscellaneous_901713112 |
source | Elsevier ScienceDirect Journals |
subjects | Biological Errors Estimates Mathematical models Methodology Modelization Net radiation Neural networks Radiometer Radiometers Trains |
title | Modelling net radiation at surface using “ in situ” netpyrradiometer measurements with artificial neural networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T02%3A07%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20net%20radiation%20at%20surface%20using%20%E2%80%9C%20in%20situ%E2%80%9D%20netpyrradiometer%20measurements%20with%20artificial%20neural%20networks&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Geraldo-Ferreira,%20Antonio&rft.date=2011-10-01&rft.volume=38&rft.issue=11&rft.spage=14190&rft.epage=14195&rft.pages=14190-14195&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2011.04.231&rft_dat=%3Cproquest_cross%3E901713112%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1701092115&rft_id=info:pmid/&rft_els_id=S0957417411007585&rfr_iscdi=true |