An efficient method for solving elliptic boundary element problems with application to the tokamak vacuum problem

A method for regularizing ill-posed Neumann Poisson-type problems based on applying operator transformations is presented. This method can be implemented in the context of the finite element method to compute the solution to inhomogeneous Neumann boundary conditions; it allows to overcome cases wher...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer physics communications 2011-10, Vol.182 (10), p.2077-2083
Hauptverfasser: Pletzer, Alexander, Strauss, H.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2083
container_issue 10
container_start_page 2077
container_title Computer physics communications
container_volume 182
creator Pletzer, Alexander
Strauss, H.R.
description A method for regularizing ill-posed Neumann Poisson-type problems based on applying operator transformations is presented. This method can be implemented in the context of the finite element method to compute the solution to inhomogeneous Neumann boundary conditions; it allows to overcome cases where the Neumann problem otherwise admits an infinite number of solutions. As a test application, we solve the Grad–Shafranov boundary problem in a toroidally symmetric geometry. Solving the regularized Neumann response problem is found to be several orders of magnitudes more efficient than solving the Dirichlet problem, which makes the approach competitive with the boundary element method without the need to derive a Green function. In the context of the boundary element method, the operator transformation technique can also be applied to obtain the response of the Grad–Shafranov equation from the toroidal Laplace n=1 response matrix using a simple matrix transformation. ► Developed a method for solving ill-posed Neumann problems by applying operator transformations. ► Can be applied to derive new Green functions and re-cast ill-posed Neumann problems into well posed ones. ► Applied method to solve n=0 and n!=0 vacuum response problem in tokamaks.
doi_str_mv 10.1016/j.cpc.2011.05.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901711954</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010465511001548</els_id><sourcerecordid>901711954</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-a29ef3b2c0dc2eb5cd4f6b5882aced8033036622d5defcd8063c318c589eb3733</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhS0EEkvLD-DmG1ySju04icWpqgpUWokLPVvOZMJ6m8Rp7GzFv8erhWtPM3r6nq15j7FPAkoBor45lrhgKUGIEnQJIN6wnWgbU0hTVW_ZLitQVLXW79mHGI8A0DRG7djz7cxpGDx6mhOfKB1Cz4ew8hjGk59_cxpHvySPvAvb3Lv1T1ZoOsPLGrq8Rv7i04G7ZRk9uuTDzFPg6UB5PLnJPfGTw22b_vPX7N3gxkgf_80r9vjt_tfdj2L_8_vD3e2-QFXLVDhpaFCdROhRUqexr4a6020rHVLfglKg6lrKXvc0YBZqhUq0qFtDnWqUumKfL-_mf583islOPmI-x80UtmgNiEYIo6tMfnmVFE0DqqoqYzIqLiiuIcaVBrusfsqpWAH2XIQ92lyEPRdhQdsce_Z8vXgoX3vytNp4Tjtf4VfCZPvgX3H_BRfikt8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770344499</pqid></control><display><type>article</type><title>An efficient method for solving elliptic boundary element problems with application to the tokamak vacuum problem</title><source>Elsevier ScienceDirect Journals</source><creator>Pletzer, Alexander ; Strauss, H.R.</creator><creatorcontrib>Pletzer, Alexander ; Strauss, H.R.</creatorcontrib><description>A method for regularizing ill-posed Neumann Poisson-type problems based on applying operator transformations is presented. This method can be implemented in the context of the finite element method to compute the solution to inhomogeneous Neumann boundary conditions; it allows to overcome cases where the Neumann problem otherwise admits an infinite number of solutions. As a test application, we solve the Grad–Shafranov boundary problem in a toroidally symmetric geometry. Solving the regularized Neumann response problem is found to be several orders of magnitudes more efficient than solving the Dirichlet problem, which makes the approach competitive with the boundary element method without the need to derive a Green function. In the context of the boundary element method, the operator transformation technique can also be applied to obtain the response of the Grad–Shafranov equation from the toroidal Laplace n=1 response matrix using a simple matrix transformation. ► Developed a method for solving ill-posed Neumann problems by applying operator transformations. ► Can be applied to derive new Green functions and re-cast ill-posed Neumann problems into well posed ones. ► Applied method to solve n=0 and n!=0 vacuum response problem in tokamaks.</description><identifier>ISSN: 0010-4655</identifier><identifier>EISSN: 1879-2944</identifier><identifier>DOI: 10.1016/j.cpc.2011.05.001</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Boundaries ; Boundary element method ; Dirichlet problem ; Finite element method ; Green functions ; Mathematical analysis ; Mathematical models ; Neumann problem ; Operators ; Regularization ; Tokamak devices ; Toroidal vacuum solution ; Transformations</subject><ispartof>Computer physics communications, 2011-10, Vol.182 (10), p.2077-2083</ispartof><rights>2011 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-a29ef3b2c0dc2eb5cd4f6b5882aced8033036622d5defcd8063c318c589eb3733</citedby><cites>FETCH-LOGICAL-c362t-a29ef3b2c0dc2eb5cd4f6b5882aced8033036622d5defcd8063c318c589eb3733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010465511001548$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Pletzer, Alexander</creatorcontrib><creatorcontrib>Strauss, H.R.</creatorcontrib><title>An efficient method for solving elliptic boundary element problems with application to the tokamak vacuum problem</title><title>Computer physics communications</title><description>A method for regularizing ill-posed Neumann Poisson-type problems based on applying operator transformations is presented. This method can be implemented in the context of the finite element method to compute the solution to inhomogeneous Neumann boundary conditions; it allows to overcome cases where the Neumann problem otherwise admits an infinite number of solutions. As a test application, we solve the Grad–Shafranov boundary problem in a toroidally symmetric geometry. Solving the regularized Neumann response problem is found to be several orders of magnitudes more efficient than solving the Dirichlet problem, which makes the approach competitive with the boundary element method without the need to derive a Green function. In the context of the boundary element method, the operator transformation technique can also be applied to obtain the response of the Grad–Shafranov equation from the toroidal Laplace n=1 response matrix using a simple matrix transformation. ► Developed a method for solving ill-posed Neumann problems by applying operator transformations. ► Can be applied to derive new Green functions and re-cast ill-posed Neumann problems into well posed ones. ► Applied method to solve n=0 and n!=0 vacuum response problem in tokamaks.</description><subject>Boundaries</subject><subject>Boundary element method</subject><subject>Dirichlet problem</subject><subject>Finite element method</subject><subject>Green functions</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Neumann problem</subject><subject>Operators</subject><subject>Regularization</subject><subject>Tokamak devices</subject><subject>Toroidal vacuum solution</subject><subject>Transformations</subject><issn>0010-4655</issn><issn>1879-2944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kUFv1DAQhS0EEkvLD-DmG1ySju04icWpqgpUWokLPVvOZMJ6m8Rp7GzFv8erhWtPM3r6nq15j7FPAkoBor45lrhgKUGIEnQJIN6wnWgbU0hTVW_ZLitQVLXW79mHGI8A0DRG7djz7cxpGDx6mhOfKB1Cz4ew8hjGk59_cxpHvySPvAvb3Lv1T1ZoOsPLGrq8Rv7i04G7ZRk9uuTDzFPg6UB5PLnJPfGTw22b_vPX7N3gxkgf_80r9vjt_tfdj2L_8_vD3e2-QFXLVDhpaFCdROhRUqexr4a6020rHVLfglKg6lrKXvc0YBZqhUq0qFtDnWqUumKfL-_mf583islOPmI-x80UtmgNiEYIo6tMfnmVFE0DqqoqYzIqLiiuIcaVBrusfsqpWAH2XIQ92lyEPRdhQdsce_Z8vXgoX3vytNp4Tjtf4VfCZPvgX3H_BRfikt8</recordid><startdate>201110</startdate><enddate>201110</enddate><creator>Pletzer, Alexander</creator><creator>Strauss, H.R.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201110</creationdate><title>An efficient method for solving elliptic boundary element problems with application to the tokamak vacuum problem</title><author>Pletzer, Alexander ; Strauss, H.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-a29ef3b2c0dc2eb5cd4f6b5882aced8033036622d5defcd8063c318c589eb3733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Boundaries</topic><topic>Boundary element method</topic><topic>Dirichlet problem</topic><topic>Finite element method</topic><topic>Green functions</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Neumann problem</topic><topic>Operators</topic><topic>Regularization</topic><topic>Tokamak devices</topic><topic>Toroidal vacuum solution</topic><topic>Transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pletzer, Alexander</creatorcontrib><creatorcontrib>Strauss, H.R.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer physics communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pletzer, Alexander</au><au>Strauss, H.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An efficient method for solving elliptic boundary element problems with application to the tokamak vacuum problem</atitle><jtitle>Computer physics communications</jtitle><date>2011-10</date><risdate>2011</risdate><volume>182</volume><issue>10</issue><spage>2077</spage><epage>2083</epage><pages>2077-2083</pages><issn>0010-4655</issn><eissn>1879-2944</eissn><abstract>A method for regularizing ill-posed Neumann Poisson-type problems based on applying operator transformations is presented. This method can be implemented in the context of the finite element method to compute the solution to inhomogeneous Neumann boundary conditions; it allows to overcome cases where the Neumann problem otherwise admits an infinite number of solutions. As a test application, we solve the Grad–Shafranov boundary problem in a toroidally symmetric geometry. Solving the regularized Neumann response problem is found to be several orders of magnitudes more efficient than solving the Dirichlet problem, which makes the approach competitive with the boundary element method without the need to derive a Green function. In the context of the boundary element method, the operator transformation technique can also be applied to obtain the response of the Grad–Shafranov equation from the toroidal Laplace n=1 response matrix using a simple matrix transformation. ► Developed a method for solving ill-posed Neumann problems by applying operator transformations. ► Can be applied to derive new Green functions and re-cast ill-posed Neumann problems into well posed ones. ► Applied method to solve n=0 and n!=0 vacuum response problem in tokamaks.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cpc.2011.05.001</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-4655
ispartof Computer physics communications, 2011-10, Vol.182 (10), p.2077-2083
issn 0010-4655
1879-2944
language eng
recordid cdi_proquest_miscellaneous_901711954
source Elsevier ScienceDirect Journals
subjects Boundaries
Boundary element method
Dirichlet problem
Finite element method
Green functions
Mathematical analysis
Mathematical models
Neumann problem
Operators
Regularization
Tokamak devices
Toroidal vacuum solution
Transformations
title An efficient method for solving elliptic boundary element problems with application to the tokamak vacuum problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T02%3A31%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20efficient%20method%20for%20solving%20elliptic%20boundary%20element%20problems%20with%20application%20to%20the%20tokamak%20vacuum%20problem&rft.jtitle=Computer%20physics%20communications&rft.au=Pletzer,%20Alexander&rft.date=2011-10&rft.volume=182&rft.issue=10&rft.spage=2077&rft.epage=2083&rft.pages=2077-2083&rft.issn=0010-4655&rft.eissn=1879-2944&rft_id=info:doi/10.1016/j.cpc.2011.05.001&rft_dat=%3Cproquest_cross%3E901711954%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770344499&rft_id=info:pmid/&rft_els_id=S0010465511001548&rfr_iscdi=true