An efficient method for solving elliptic boundary element problems with application to the tokamak vacuum problem
A method for regularizing ill-posed Neumann Poisson-type problems based on applying operator transformations is presented. This method can be implemented in the context of the finite element method to compute the solution to inhomogeneous Neumann boundary conditions; it allows to overcome cases wher...
Gespeichert in:
Veröffentlicht in: | Computer physics communications 2011-10, Vol.182 (10), p.2077-2083 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2083 |
---|---|
container_issue | 10 |
container_start_page | 2077 |
container_title | Computer physics communications |
container_volume | 182 |
creator | Pletzer, Alexander Strauss, H.R. |
description | A method for regularizing ill-posed Neumann Poisson-type problems based on applying operator transformations is presented. This method can be implemented in the context of the finite element method to compute the solution to inhomogeneous Neumann boundary conditions; it allows to overcome cases where the Neumann problem otherwise admits an infinite number of solutions. As a test application, we solve the Grad–Shafranov boundary problem in a toroidally symmetric geometry. Solving the regularized Neumann response problem is found to be several orders of magnitudes more efficient than solving the Dirichlet problem, which makes the approach competitive with the boundary element method without the need to derive a Green function. In the context of the boundary element method, the operator transformation technique can also be applied to obtain the response of the Grad–Shafranov equation from the toroidal Laplace n=1 response matrix using a simple matrix transformation.
► Developed a method for solving ill-posed Neumann problems by applying operator transformations. ► Can be applied to derive new Green functions and re-cast ill-posed Neumann problems into well posed ones. ► Applied method to solve n=0 and n!=0 vacuum response problem in tokamaks. |
doi_str_mv | 10.1016/j.cpc.2011.05.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901711954</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010465511001548</els_id><sourcerecordid>901711954</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-a29ef3b2c0dc2eb5cd4f6b5882aced8033036622d5defcd8063c318c589eb3733</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhS0EEkvLD-DmG1ySju04icWpqgpUWokLPVvOZMJ6m8Rp7GzFv8erhWtPM3r6nq15j7FPAkoBor45lrhgKUGIEnQJIN6wnWgbU0hTVW_ZLitQVLXW79mHGI8A0DRG7djz7cxpGDx6mhOfKB1Cz4ew8hjGk59_cxpHvySPvAvb3Lv1T1ZoOsPLGrq8Rv7i04G7ZRk9uuTDzFPg6UB5PLnJPfGTw22b_vPX7N3gxkgf_80r9vjt_tfdj2L_8_vD3e2-QFXLVDhpaFCdROhRUqexr4a6020rHVLfglKg6lrKXvc0YBZqhUq0qFtDnWqUumKfL-_mf583islOPmI-x80UtmgNiEYIo6tMfnmVFE0DqqoqYzIqLiiuIcaVBrusfsqpWAH2XIQ92lyEPRdhQdsce_Z8vXgoX3vytNp4Tjtf4VfCZPvgX3H_BRfikt8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770344499</pqid></control><display><type>article</type><title>An efficient method for solving elliptic boundary element problems with application to the tokamak vacuum problem</title><source>Elsevier ScienceDirect Journals</source><creator>Pletzer, Alexander ; Strauss, H.R.</creator><creatorcontrib>Pletzer, Alexander ; Strauss, H.R.</creatorcontrib><description>A method for regularizing ill-posed Neumann Poisson-type problems based on applying operator transformations is presented. This method can be implemented in the context of the finite element method to compute the solution to inhomogeneous Neumann boundary conditions; it allows to overcome cases where the Neumann problem otherwise admits an infinite number of solutions. As a test application, we solve the Grad–Shafranov boundary problem in a toroidally symmetric geometry. Solving the regularized Neumann response problem is found to be several orders of magnitudes more efficient than solving the Dirichlet problem, which makes the approach competitive with the boundary element method without the need to derive a Green function. In the context of the boundary element method, the operator transformation technique can also be applied to obtain the response of the Grad–Shafranov equation from the toroidal Laplace n=1 response matrix using a simple matrix transformation.
► Developed a method for solving ill-posed Neumann problems by applying operator transformations. ► Can be applied to derive new Green functions and re-cast ill-posed Neumann problems into well posed ones. ► Applied method to solve n=0 and n!=0 vacuum response problem in tokamaks.</description><identifier>ISSN: 0010-4655</identifier><identifier>EISSN: 1879-2944</identifier><identifier>DOI: 10.1016/j.cpc.2011.05.001</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Boundaries ; Boundary element method ; Dirichlet problem ; Finite element method ; Green functions ; Mathematical analysis ; Mathematical models ; Neumann problem ; Operators ; Regularization ; Tokamak devices ; Toroidal vacuum solution ; Transformations</subject><ispartof>Computer physics communications, 2011-10, Vol.182 (10), p.2077-2083</ispartof><rights>2011 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-a29ef3b2c0dc2eb5cd4f6b5882aced8033036622d5defcd8063c318c589eb3733</citedby><cites>FETCH-LOGICAL-c362t-a29ef3b2c0dc2eb5cd4f6b5882aced8033036622d5defcd8063c318c589eb3733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010465511001548$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Pletzer, Alexander</creatorcontrib><creatorcontrib>Strauss, H.R.</creatorcontrib><title>An efficient method for solving elliptic boundary element problems with application to the tokamak vacuum problem</title><title>Computer physics communications</title><description>A method for regularizing ill-posed Neumann Poisson-type problems based on applying operator transformations is presented. This method can be implemented in the context of the finite element method to compute the solution to inhomogeneous Neumann boundary conditions; it allows to overcome cases where the Neumann problem otherwise admits an infinite number of solutions. As a test application, we solve the Grad–Shafranov boundary problem in a toroidally symmetric geometry. Solving the regularized Neumann response problem is found to be several orders of magnitudes more efficient than solving the Dirichlet problem, which makes the approach competitive with the boundary element method without the need to derive a Green function. In the context of the boundary element method, the operator transformation technique can also be applied to obtain the response of the Grad–Shafranov equation from the toroidal Laplace n=1 response matrix using a simple matrix transformation.
► Developed a method for solving ill-posed Neumann problems by applying operator transformations. ► Can be applied to derive new Green functions and re-cast ill-posed Neumann problems into well posed ones. ► Applied method to solve n=0 and n!=0 vacuum response problem in tokamaks.</description><subject>Boundaries</subject><subject>Boundary element method</subject><subject>Dirichlet problem</subject><subject>Finite element method</subject><subject>Green functions</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Neumann problem</subject><subject>Operators</subject><subject>Regularization</subject><subject>Tokamak devices</subject><subject>Toroidal vacuum solution</subject><subject>Transformations</subject><issn>0010-4655</issn><issn>1879-2944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kUFv1DAQhS0EEkvLD-DmG1ySju04icWpqgpUWokLPVvOZMJ6m8Rp7GzFv8erhWtPM3r6nq15j7FPAkoBor45lrhgKUGIEnQJIN6wnWgbU0hTVW_ZLitQVLXW79mHGI8A0DRG7djz7cxpGDx6mhOfKB1Cz4ew8hjGk59_cxpHvySPvAvb3Lv1T1ZoOsPLGrq8Rv7i04G7ZRk9uuTDzFPg6UB5PLnJPfGTw22b_vPX7N3gxkgf_80r9vjt_tfdj2L_8_vD3e2-QFXLVDhpaFCdROhRUqexr4a6020rHVLfglKg6lrKXvc0YBZqhUq0qFtDnWqUumKfL-_mf583islOPmI-x80UtmgNiEYIo6tMfnmVFE0DqqoqYzIqLiiuIcaVBrusfsqpWAH2XIQ92lyEPRdhQdsce_Z8vXgoX3vytNp4Tjtf4VfCZPvgX3H_BRfikt8</recordid><startdate>201110</startdate><enddate>201110</enddate><creator>Pletzer, Alexander</creator><creator>Strauss, H.R.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201110</creationdate><title>An efficient method for solving elliptic boundary element problems with application to the tokamak vacuum problem</title><author>Pletzer, Alexander ; Strauss, H.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-a29ef3b2c0dc2eb5cd4f6b5882aced8033036622d5defcd8063c318c589eb3733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Boundaries</topic><topic>Boundary element method</topic><topic>Dirichlet problem</topic><topic>Finite element method</topic><topic>Green functions</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Neumann problem</topic><topic>Operators</topic><topic>Regularization</topic><topic>Tokamak devices</topic><topic>Toroidal vacuum solution</topic><topic>Transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pletzer, Alexander</creatorcontrib><creatorcontrib>Strauss, H.R.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer physics communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pletzer, Alexander</au><au>Strauss, H.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An efficient method for solving elliptic boundary element problems with application to the tokamak vacuum problem</atitle><jtitle>Computer physics communications</jtitle><date>2011-10</date><risdate>2011</risdate><volume>182</volume><issue>10</issue><spage>2077</spage><epage>2083</epage><pages>2077-2083</pages><issn>0010-4655</issn><eissn>1879-2944</eissn><abstract>A method for regularizing ill-posed Neumann Poisson-type problems based on applying operator transformations is presented. This method can be implemented in the context of the finite element method to compute the solution to inhomogeneous Neumann boundary conditions; it allows to overcome cases where the Neumann problem otherwise admits an infinite number of solutions. As a test application, we solve the Grad–Shafranov boundary problem in a toroidally symmetric geometry. Solving the regularized Neumann response problem is found to be several orders of magnitudes more efficient than solving the Dirichlet problem, which makes the approach competitive with the boundary element method without the need to derive a Green function. In the context of the boundary element method, the operator transformation technique can also be applied to obtain the response of the Grad–Shafranov equation from the toroidal Laplace n=1 response matrix using a simple matrix transformation.
► Developed a method for solving ill-posed Neumann problems by applying operator transformations. ► Can be applied to derive new Green functions and re-cast ill-posed Neumann problems into well posed ones. ► Applied method to solve n=0 and n!=0 vacuum response problem in tokamaks.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cpc.2011.05.001</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-4655 |
ispartof | Computer physics communications, 2011-10, Vol.182 (10), p.2077-2083 |
issn | 0010-4655 1879-2944 |
language | eng |
recordid | cdi_proquest_miscellaneous_901711954 |
source | Elsevier ScienceDirect Journals |
subjects | Boundaries Boundary element method Dirichlet problem Finite element method Green functions Mathematical analysis Mathematical models Neumann problem Operators Regularization Tokamak devices Toroidal vacuum solution Transformations |
title | An efficient method for solving elliptic boundary element problems with application to the tokamak vacuum problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T02%3A31%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20efficient%20method%20for%20solving%20elliptic%20boundary%20element%20problems%20with%20application%20to%20the%20tokamak%20vacuum%20problem&rft.jtitle=Computer%20physics%20communications&rft.au=Pletzer,%20Alexander&rft.date=2011-10&rft.volume=182&rft.issue=10&rft.spage=2077&rft.epage=2083&rft.pages=2077-2083&rft.issn=0010-4655&rft.eissn=1879-2944&rft_id=info:doi/10.1016/j.cpc.2011.05.001&rft_dat=%3Cproquest_cross%3E901711954%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770344499&rft_id=info:pmid/&rft_els_id=S0010465511001548&rfr_iscdi=true |