Numerical performance of parallel group explicit solvers for the solution of fourth order elliptic equations
Many applications in applied mathematics and engineering involve numerical solutions of partial differential equations (PDEs). Various discretisation procedures such as the finite difference method result in a problem of solving large, sparse systems of linear equations. In this paper, a group itera...
Gespeichert in:
Veröffentlicht in: | Applied mathematics and computation 2010-11, Vol.217 (6), p.2737-2749 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2749 |
---|---|
container_issue | 6 |
container_start_page | 2737 |
container_title | Applied mathematics and computation |
container_volume | 217 |
creator | Mohd. Ali, Norhashidah Hj Kok Teong, Khoo |
description | Many applications in applied mathematics and engineering involve numerical solutions of partial differential equations (PDEs). Various discretisation procedures such as the finite difference method result in a problem of solving large, sparse systems of linear equations. In this paper, a group iterative numerical scheme based on the rotated (skewed) five-point finite difference discretisation is proposed for the solution of a fourth order elliptic PDE which represents physical situations in fluid mechanics and elasticity. The rotated approximation formulas lead to schemes with lower computational complexities compared to the centred approximation formulas since the iterative procedure need only involve nodes on half of the total grid points in the solution domain. We describe the development of the parallel group iterative scheme on a cluster of distributed memory parallel computer using Message-Passing Interface (MPI) programming environment. A comparative study with another group iterative scheme derived from the centred difference formula is also presented. A detailed performance analysis of the parallel implementations of both group methods will be reported and discussed. |
doi_str_mv | 10.1016/j.amc.2010.08.009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901710686</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300310008635</els_id><sourcerecordid>901710686</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-5220203041e574a3cf3031a936045f15f843fb64004ff92c98b3f2d5d59e69523</originalsourceid><addsrcrecordid>eNp9kE1v1DAQhi0EEkvhB3DzBXHKMo4_EosTqviSKrjA2XKdMfXKWafjpIJ_j6OtOHIazeh5x-OHsdcCjgKEeXc6-jkce2g9jEcA-4QdxDjIThtln7JDm5hOAsjn7EWtJwAYjFAHlr9tM1IKPvMFKRaa_TkgL5EvnnzOmPkvKtvC8feSU0grryU_IFXeWL7e4d5vayrnPRPLRusdLzQhccw5LWsKHO83vxP1JXsWfa746rFesZ-fPv64_tLdfP_89frDTRektmun-x56kKAE6kF5GaIEKbyVBpSOQsdRyXhrFICK0fbBjrcy9pOetEVjdS-v2NvL3oXK_YZ1dXOqod3jz1i26iyIQYAZTSPFhQxUaiWMbqE0e_rjBLhdrDu5JtbtYh2MrmlsmTeP231t3iI1Y6n-C_ZKDGM7v3HvLxy2rz4kJFdDwmZ3SoRhdVNJ_3nlL6CqjnU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901710686</pqid></control><display><type>article</type><title>Numerical performance of parallel group explicit solvers for the solution of fourth order elliptic equations</title><source>Elsevier ScienceDirect Journals</source><creator>Mohd. Ali, Norhashidah Hj ; Kok Teong, Khoo</creator><creatorcontrib>Mohd. Ali, Norhashidah Hj ; Kok Teong, Khoo</creatorcontrib><description>Many applications in applied mathematics and engineering involve numerical solutions of partial differential equations (PDEs). Various discretisation procedures such as the finite difference method result in a problem of solving large, sparse systems of linear equations. In this paper, a group iterative numerical scheme based on the rotated (skewed) five-point finite difference discretisation is proposed for the solution of a fourth order elliptic PDE which represents physical situations in fluid mechanics and elasticity. The rotated approximation formulas lead to schemes with lower computational complexities compared to the centred approximation formulas since the iterative procedure need only involve nodes on half of the total grid points in the solution domain. We describe the development of the parallel group iterative scheme on a cluster of distributed memory parallel computer using Message-Passing Interface (MPI) programming environment. A comparative study with another group iterative scheme derived from the centred difference formula is also presented. A detailed performance analysis of the parallel implementations of both group methods will be reported and discussed.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2010.08.009</identifier><identifier>CODEN: AMHCBQ</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Approximation ; Biharmonic equation ; Computation ; Exact sciences and technology ; Finite difference method ; Group explicit methods ; Iterative methods ; Mathematical analysis ; Mathematical models ; Mathematics ; Message passing interface ; Nonlinear algebraic and transcendental equations ; Numerical analysis ; Numerical analysis. Scientific computation ; Parallel implementation ; Partial differential equations ; Partial differential equations, boundary value problems ; Partial differential equations, initial value problems and time-dependant initial-boundary value problems ; Sciences and techniques of general use ; Solvers</subject><ispartof>Applied mathematics and computation, 2010-11, Vol.217 (6), p.2737-2749</ispartof><rights>2010 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-5220203041e574a3cf3031a936045f15f843fb64004ff92c98b3f2d5d59e69523</citedby><cites>FETCH-LOGICAL-c359t-5220203041e574a3cf3031a936045f15f843fb64004ff92c98b3f2d5d59e69523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0096300310008635$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24178203$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mohd. Ali, Norhashidah Hj</creatorcontrib><creatorcontrib>Kok Teong, Khoo</creatorcontrib><title>Numerical performance of parallel group explicit solvers for the solution of fourth order elliptic equations</title><title>Applied mathematics and computation</title><description>Many applications in applied mathematics and engineering involve numerical solutions of partial differential equations (PDEs). Various discretisation procedures such as the finite difference method result in a problem of solving large, sparse systems of linear equations. In this paper, a group iterative numerical scheme based on the rotated (skewed) five-point finite difference discretisation is proposed for the solution of a fourth order elliptic PDE which represents physical situations in fluid mechanics and elasticity. The rotated approximation formulas lead to schemes with lower computational complexities compared to the centred approximation formulas since the iterative procedure need only involve nodes on half of the total grid points in the solution domain. We describe the development of the parallel group iterative scheme on a cluster of distributed memory parallel computer using Message-Passing Interface (MPI) programming environment. A comparative study with another group iterative scheme derived from the centred difference formula is also presented. A detailed performance analysis of the parallel implementations of both group methods will be reported and discussed.</description><subject>Approximation</subject><subject>Biharmonic equation</subject><subject>Computation</subject><subject>Exact sciences and technology</subject><subject>Finite difference method</subject><subject>Group explicit methods</subject><subject>Iterative methods</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Message passing interface</subject><subject>Nonlinear algebraic and transcendental equations</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Parallel implementation</subject><subject>Partial differential equations</subject><subject>Partial differential equations, boundary value problems</subject><subject>Partial differential equations, initial value problems and time-dependant initial-boundary value problems</subject><subject>Sciences and techniques of general use</subject><subject>Solvers</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE1v1DAQhi0EEkvhB3DzBXHKMo4_EosTqviSKrjA2XKdMfXKWafjpIJ_j6OtOHIazeh5x-OHsdcCjgKEeXc6-jkce2g9jEcA-4QdxDjIThtln7JDm5hOAsjn7EWtJwAYjFAHlr9tM1IKPvMFKRaa_TkgL5EvnnzOmPkvKtvC8feSU0grryU_IFXeWL7e4d5vayrnPRPLRusdLzQhccw5LWsKHO83vxP1JXsWfa746rFesZ-fPv64_tLdfP_89frDTRektmun-x56kKAE6kF5GaIEKbyVBpSOQsdRyXhrFICK0fbBjrcy9pOetEVjdS-v2NvL3oXK_YZ1dXOqod3jz1i26iyIQYAZTSPFhQxUaiWMbqE0e_rjBLhdrDu5JtbtYh2MrmlsmTeP231t3iI1Y6n-C_ZKDGM7v3HvLxy2rz4kJFdDwmZ3SoRhdVNJ_3nlL6CqjnU</recordid><startdate>20101115</startdate><enddate>20101115</enddate><creator>Mohd. Ali, Norhashidah Hj</creator><creator>Kok Teong, Khoo</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20101115</creationdate><title>Numerical performance of parallel group explicit solvers for the solution of fourth order elliptic equations</title><author>Mohd. Ali, Norhashidah Hj ; Kok Teong, Khoo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-5220203041e574a3cf3031a936045f15f843fb64004ff92c98b3f2d5d59e69523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Approximation</topic><topic>Biharmonic equation</topic><topic>Computation</topic><topic>Exact sciences and technology</topic><topic>Finite difference method</topic><topic>Group explicit methods</topic><topic>Iterative methods</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Message passing interface</topic><topic>Nonlinear algebraic and transcendental equations</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Parallel implementation</topic><topic>Partial differential equations</topic><topic>Partial differential equations, boundary value problems</topic><topic>Partial differential equations, initial value problems and time-dependant initial-boundary value problems</topic><topic>Sciences and techniques of general use</topic><topic>Solvers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohd. Ali, Norhashidah Hj</creatorcontrib><creatorcontrib>Kok Teong, Khoo</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohd. Ali, Norhashidah Hj</au><au>Kok Teong, Khoo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical performance of parallel group explicit solvers for the solution of fourth order elliptic equations</atitle><jtitle>Applied mathematics and computation</jtitle><date>2010-11-15</date><risdate>2010</risdate><volume>217</volume><issue>6</issue><spage>2737</spage><epage>2749</epage><pages>2737-2749</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><coden>AMHCBQ</coden><abstract>Many applications in applied mathematics and engineering involve numerical solutions of partial differential equations (PDEs). Various discretisation procedures such as the finite difference method result in a problem of solving large, sparse systems of linear equations. In this paper, a group iterative numerical scheme based on the rotated (skewed) five-point finite difference discretisation is proposed for the solution of a fourth order elliptic PDE which represents physical situations in fluid mechanics and elasticity. The rotated approximation formulas lead to schemes with lower computational complexities compared to the centred approximation formulas since the iterative procedure need only involve nodes on half of the total grid points in the solution domain. We describe the development of the parallel group iterative scheme on a cluster of distributed memory parallel computer using Message-Passing Interface (MPI) programming environment. A comparative study with another group iterative scheme derived from the centred difference formula is also presented. A detailed performance analysis of the parallel implementations of both group methods will be reported and discussed.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2010.08.009</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0096-3003 |
ispartof | Applied mathematics and computation, 2010-11, Vol.217 (6), p.2737-2749 |
issn | 0096-3003 1873-5649 |
language | eng |
recordid | cdi_proquest_miscellaneous_901710686 |
source | Elsevier ScienceDirect Journals |
subjects | Approximation Biharmonic equation Computation Exact sciences and technology Finite difference method Group explicit methods Iterative methods Mathematical analysis Mathematical models Mathematics Message passing interface Nonlinear algebraic and transcendental equations Numerical analysis Numerical analysis. Scientific computation Parallel implementation Partial differential equations Partial differential equations, boundary value problems Partial differential equations, initial value problems and time-dependant initial-boundary value problems Sciences and techniques of general use Solvers |
title | Numerical performance of parallel group explicit solvers for the solution of fourth order elliptic equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T02%3A47%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20performance%20of%20parallel%20group%20explicit%20solvers%20for%20the%20solution%20of%20fourth%20order%20elliptic%20equations&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Mohd.%20Ali,%20Norhashidah%20Hj&rft.date=2010-11-15&rft.volume=217&rft.issue=6&rft.spage=2737&rft.epage=2749&rft.pages=2737-2749&rft.issn=0096-3003&rft.eissn=1873-5649&rft.coden=AMHCBQ&rft_id=info:doi/10.1016/j.amc.2010.08.009&rft_dat=%3Cproquest_cross%3E901710686%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=901710686&rft_id=info:pmid/&rft_els_id=S0096300310008635&rfr_iscdi=true |