Numerical performance of parallel group explicit solvers for the solution of fourth order elliptic equations

Many applications in applied mathematics and engineering involve numerical solutions of partial differential equations (PDEs). Various discretisation procedures such as the finite difference method result in a problem of solving large, sparse systems of linear equations. In this paper, a group itera...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation 2010-11, Vol.217 (6), p.2737-2749
Hauptverfasser: Mohd. Ali, Norhashidah Hj, Kok Teong, Khoo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2749
container_issue 6
container_start_page 2737
container_title Applied mathematics and computation
container_volume 217
creator Mohd. Ali, Norhashidah Hj
Kok Teong, Khoo
description Many applications in applied mathematics and engineering involve numerical solutions of partial differential equations (PDEs). Various discretisation procedures such as the finite difference method result in a problem of solving large, sparse systems of linear equations. In this paper, a group iterative numerical scheme based on the rotated (skewed) five-point finite difference discretisation is proposed for the solution of a fourth order elliptic PDE which represents physical situations in fluid mechanics and elasticity. The rotated approximation formulas lead to schemes with lower computational complexities compared to the centred approximation formulas since the iterative procedure need only involve nodes on half of the total grid points in the solution domain. We describe the development of the parallel group iterative scheme on a cluster of distributed memory parallel computer using Message-Passing Interface (MPI) programming environment. A comparative study with another group iterative scheme derived from the centred difference formula is also presented. A detailed performance analysis of the parallel implementations of both group methods will be reported and discussed.
doi_str_mv 10.1016/j.amc.2010.08.009
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901710686</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300310008635</els_id><sourcerecordid>901710686</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-5220203041e574a3cf3031a936045f15f843fb64004ff92c98b3f2d5d59e69523</originalsourceid><addsrcrecordid>eNp9kE1v1DAQhi0EEkvhB3DzBXHKMo4_EosTqviSKrjA2XKdMfXKWafjpIJ_j6OtOHIazeh5x-OHsdcCjgKEeXc6-jkce2g9jEcA-4QdxDjIThtln7JDm5hOAsjn7EWtJwAYjFAHlr9tM1IKPvMFKRaa_TkgL5EvnnzOmPkvKtvC8feSU0grryU_IFXeWL7e4d5vayrnPRPLRusdLzQhccw5LWsKHO83vxP1JXsWfa746rFesZ-fPv64_tLdfP_89frDTRektmun-x56kKAE6kF5GaIEKbyVBpSOQsdRyXhrFICK0fbBjrcy9pOetEVjdS-v2NvL3oXK_YZ1dXOqod3jz1i26iyIQYAZTSPFhQxUaiWMbqE0e_rjBLhdrDu5JtbtYh2MrmlsmTeP231t3iI1Y6n-C_ZKDGM7v3HvLxy2rz4kJFdDwmZ3SoRhdVNJ_3nlL6CqjnU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901710686</pqid></control><display><type>article</type><title>Numerical performance of parallel group explicit solvers for the solution of fourth order elliptic equations</title><source>Elsevier ScienceDirect Journals</source><creator>Mohd. Ali, Norhashidah Hj ; Kok Teong, Khoo</creator><creatorcontrib>Mohd. Ali, Norhashidah Hj ; Kok Teong, Khoo</creatorcontrib><description>Many applications in applied mathematics and engineering involve numerical solutions of partial differential equations (PDEs). Various discretisation procedures such as the finite difference method result in a problem of solving large, sparse systems of linear equations. In this paper, a group iterative numerical scheme based on the rotated (skewed) five-point finite difference discretisation is proposed for the solution of a fourth order elliptic PDE which represents physical situations in fluid mechanics and elasticity. The rotated approximation formulas lead to schemes with lower computational complexities compared to the centred approximation formulas since the iterative procedure need only involve nodes on half of the total grid points in the solution domain. We describe the development of the parallel group iterative scheme on a cluster of distributed memory parallel computer using Message-Passing Interface (MPI) programming environment. A comparative study with another group iterative scheme derived from the centred difference formula is also presented. A detailed performance analysis of the parallel implementations of both group methods will be reported and discussed.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2010.08.009</identifier><identifier>CODEN: AMHCBQ</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Approximation ; Biharmonic equation ; Computation ; Exact sciences and technology ; Finite difference method ; Group explicit methods ; Iterative methods ; Mathematical analysis ; Mathematical models ; Mathematics ; Message passing interface ; Nonlinear algebraic and transcendental equations ; Numerical analysis ; Numerical analysis. Scientific computation ; Parallel implementation ; Partial differential equations ; Partial differential equations, boundary value problems ; Partial differential equations, initial value problems and time-dependant initial-boundary value problems ; Sciences and techniques of general use ; Solvers</subject><ispartof>Applied mathematics and computation, 2010-11, Vol.217 (6), p.2737-2749</ispartof><rights>2010 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-5220203041e574a3cf3031a936045f15f843fb64004ff92c98b3f2d5d59e69523</citedby><cites>FETCH-LOGICAL-c359t-5220203041e574a3cf3031a936045f15f843fb64004ff92c98b3f2d5d59e69523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0096300310008635$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24178203$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mohd. Ali, Norhashidah Hj</creatorcontrib><creatorcontrib>Kok Teong, Khoo</creatorcontrib><title>Numerical performance of parallel group explicit solvers for the solution of fourth order elliptic equations</title><title>Applied mathematics and computation</title><description>Many applications in applied mathematics and engineering involve numerical solutions of partial differential equations (PDEs). Various discretisation procedures such as the finite difference method result in a problem of solving large, sparse systems of linear equations. In this paper, a group iterative numerical scheme based on the rotated (skewed) five-point finite difference discretisation is proposed for the solution of a fourth order elliptic PDE which represents physical situations in fluid mechanics and elasticity. The rotated approximation formulas lead to schemes with lower computational complexities compared to the centred approximation formulas since the iterative procedure need only involve nodes on half of the total grid points in the solution domain. We describe the development of the parallel group iterative scheme on a cluster of distributed memory parallel computer using Message-Passing Interface (MPI) programming environment. A comparative study with another group iterative scheme derived from the centred difference formula is also presented. A detailed performance analysis of the parallel implementations of both group methods will be reported and discussed.</description><subject>Approximation</subject><subject>Biharmonic equation</subject><subject>Computation</subject><subject>Exact sciences and technology</subject><subject>Finite difference method</subject><subject>Group explicit methods</subject><subject>Iterative methods</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Message passing interface</subject><subject>Nonlinear algebraic and transcendental equations</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Parallel implementation</subject><subject>Partial differential equations</subject><subject>Partial differential equations, boundary value problems</subject><subject>Partial differential equations, initial value problems and time-dependant initial-boundary value problems</subject><subject>Sciences and techniques of general use</subject><subject>Solvers</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE1v1DAQhi0EEkvhB3DzBXHKMo4_EosTqviSKrjA2XKdMfXKWafjpIJ_j6OtOHIazeh5x-OHsdcCjgKEeXc6-jkce2g9jEcA-4QdxDjIThtln7JDm5hOAsjn7EWtJwAYjFAHlr9tM1IKPvMFKRaa_TkgL5EvnnzOmPkvKtvC8feSU0grryU_IFXeWL7e4d5vayrnPRPLRusdLzQhccw5LWsKHO83vxP1JXsWfa746rFesZ-fPv64_tLdfP_89frDTRektmun-x56kKAE6kF5GaIEKbyVBpSOQsdRyXhrFICK0fbBjrcy9pOetEVjdS-v2NvL3oXK_YZ1dXOqod3jz1i26iyIQYAZTSPFhQxUaiWMbqE0e_rjBLhdrDu5JtbtYh2MrmlsmTeP231t3iI1Y6n-C_ZKDGM7v3HvLxy2rz4kJFdDwmZ3SoRhdVNJ_3nlL6CqjnU</recordid><startdate>20101115</startdate><enddate>20101115</enddate><creator>Mohd. Ali, Norhashidah Hj</creator><creator>Kok Teong, Khoo</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20101115</creationdate><title>Numerical performance of parallel group explicit solvers for the solution of fourth order elliptic equations</title><author>Mohd. Ali, Norhashidah Hj ; Kok Teong, Khoo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-5220203041e574a3cf3031a936045f15f843fb64004ff92c98b3f2d5d59e69523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Approximation</topic><topic>Biharmonic equation</topic><topic>Computation</topic><topic>Exact sciences and technology</topic><topic>Finite difference method</topic><topic>Group explicit methods</topic><topic>Iterative methods</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Message passing interface</topic><topic>Nonlinear algebraic and transcendental equations</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Parallel implementation</topic><topic>Partial differential equations</topic><topic>Partial differential equations, boundary value problems</topic><topic>Partial differential equations, initial value problems and time-dependant initial-boundary value problems</topic><topic>Sciences and techniques of general use</topic><topic>Solvers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohd. Ali, Norhashidah Hj</creatorcontrib><creatorcontrib>Kok Teong, Khoo</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohd. Ali, Norhashidah Hj</au><au>Kok Teong, Khoo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical performance of parallel group explicit solvers for the solution of fourth order elliptic equations</atitle><jtitle>Applied mathematics and computation</jtitle><date>2010-11-15</date><risdate>2010</risdate><volume>217</volume><issue>6</issue><spage>2737</spage><epage>2749</epage><pages>2737-2749</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><coden>AMHCBQ</coden><abstract>Many applications in applied mathematics and engineering involve numerical solutions of partial differential equations (PDEs). Various discretisation procedures such as the finite difference method result in a problem of solving large, sparse systems of linear equations. In this paper, a group iterative numerical scheme based on the rotated (skewed) five-point finite difference discretisation is proposed for the solution of a fourth order elliptic PDE which represents physical situations in fluid mechanics and elasticity. The rotated approximation formulas lead to schemes with lower computational complexities compared to the centred approximation formulas since the iterative procedure need only involve nodes on half of the total grid points in the solution domain. We describe the development of the parallel group iterative scheme on a cluster of distributed memory parallel computer using Message-Passing Interface (MPI) programming environment. A comparative study with another group iterative scheme derived from the centred difference formula is also presented. A detailed performance analysis of the parallel implementations of both group methods will be reported and discussed.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2010.08.009</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0096-3003
ispartof Applied mathematics and computation, 2010-11, Vol.217 (6), p.2737-2749
issn 0096-3003
1873-5649
language eng
recordid cdi_proquest_miscellaneous_901710686
source Elsevier ScienceDirect Journals
subjects Approximation
Biharmonic equation
Computation
Exact sciences and technology
Finite difference method
Group explicit methods
Iterative methods
Mathematical analysis
Mathematical models
Mathematics
Message passing interface
Nonlinear algebraic and transcendental equations
Numerical analysis
Numerical analysis. Scientific computation
Parallel implementation
Partial differential equations
Partial differential equations, boundary value problems
Partial differential equations, initial value problems and time-dependant initial-boundary value problems
Sciences and techniques of general use
Solvers
title Numerical performance of parallel group explicit solvers for the solution of fourth order elliptic equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T02%3A47%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20performance%20of%20parallel%20group%20explicit%20solvers%20for%20the%20solution%20of%20fourth%20order%20elliptic%20equations&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Mohd.%20Ali,%20Norhashidah%20Hj&rft.date=2010-11-15&rft.volume=217&rft.issue=6&rft.spage=2737&rft.epage=2749&rft.pages=2737-2749&rft.issn=0096-3003&rft.eissn=1873-5649&rft.coden=AMHCBQ&rft_id=info:doi/10.1016/j.amc.2010.08.009&rft_dat=%3Cproquest_cross%3E901710686%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=901710686&rft_id=info:pmid/&rft_els_id=S0096300310008635&rfr_iscdi=true