Exact solutions for a nonlinear model
In this paper we show new exact solutions for a type of generalized sine-Gordon equation which is obtained by constructing a Lagrange function for a dynamical coupled system of oscillators. We convert it into a nonlinear system by perturbing the potential energy from a point of view of an approach p...
Gespeichert in:
Veröffentlicht in: | Applied mathematics and computation 2010-10, Vol.217 (4), p.1646-1651 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1651 |
---|---|
container_issue | 4 |
container_start_page | 1646 |
container_title | Applied mathematics and computation |
container_volume | 217 |
creator | Hernández, Jairo Ernesto Castillo Salas, Alvaro H. Lugo, José Gonzalo Escobar |
description | In this paper we show new exact solutions for a type of generalized sine-Gordon equation which is obtained by constructing a Lagrange function for a dynamical coupled system of oscillators. We convert it into a nonlinear system by perturbing the potential energy from a point of view of an approach proposed by Fermi
[1]. |
doi_str_mv | 10.1016/j.amc.2009.09.011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901710259</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300309008091</els_id><sourcerecordid>901710259</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-8512538cb10280511be7948cbee76d50c48ee1e9534ac012fe98b56cda1dc87f3</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLguvoDvPWyeOo60zRtgidZ1g9Y8KLnkE2nkKVt1qQr-u9N2cWjzINhmPfeMI-xW4QlAlb3u6Xp7bIAUMsJiGdshrLmuahKdc5maVHlHIBfsqsYdwBQV1jO2GL9beyYRd8dRueHmLU-ZCYb_NC5gUzIet9Qd80uWtNFujn1Oft4Wr-vXvLN2_Pr6nGTWy7UmEuBheDSbhEKCQJxS7Uq00xUV40AW0oiJCV4aSxg0ZKSW1HZxmBjZd3yObs7-u6D_zxQHHXvoqWuMwP5Q9QKsE7eQiUmHpk2-BgDtXofXG_Cj0bQUyJ6p1MiekpET0BMmsXJ3URrujaYwbr4Jyy45CpV4j0ceZRe_XIUdLSOBkuNC2RH3Xj3z5VfE750Lg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901710259</pqid></control><display><type>article</type><title>Exact solutions for a nonlinear model</title><source>Elsevier ScienceDirect Journals</source><creator>Hernández, Jairo Ernesto Castillo ; Salas, Alvaro H. ; Lugo, José Gonzalo Escobar</creator><creatorcontrib>Hernández, Jairo Ernesto Castillo ; Salas, Alvaro H. ; Lugo, José Gonzalo Escobar ; Grupo CIBAVIR</creatorcontrib><description>In this paper we show new exact solutions for a type of generalized sine-Gordon equation which is obtained by constructing a Lagrange function for a dynamical coupled system of oscillators. We convert it into a nonlinear system by perturbing the potential energy from a point of view of an approach proposed by Fermi
[1].</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2009.09.011</identifier><identifier>CODEN: AMHCBQ</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Dynamical systems ; Exact sciences and technology ; Exact solutions ; Global analysis, analysis on manifolds ; Josephson junctions ; Mathematical analysis ; Mathematical models ; Mathematics ; Nonlinear dynamics ; Nonlinear PDE ; Nonlinearity ; Numerical analysis ; Numerical analysis. Scientific computation ; Ordinary differential equations ; Oscillators ; Partial differential equations ; Perturbed equation ; Potential energy ; Sciences and techniques of general use ; Sine-Gordon equation ; Soliton solution ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds ; Traveling wave solution</subject><ispartof>Applied mathematics and computation, 2010-10, Vol.217 (4), p.1646-1651</ispartof><rights>2009 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-8512538cb10280511be7948cbee76d50c48ee1e9534ac012fe98b56cda1dc87f3</citedby><cites>FETCH-LOGICAL-c359t-8512538cb10280511be7948cbee76d50c48ee1e9534ac012fe98b56cda1dc87f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.amc.2009.09.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23839393$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hernández, Jairo Ernesto Castillo</creatorcontrib><creatorcontrib>Salas, Alvaro H.</creatorcontrib><creatorcontrib>Lugo, José Gonzalo Escobar</creatorcontrib><creatorcontrib>Grupo CIBAVIR</creatorcontrib><title>Exact solutions for a nonlinear model</title><title>Applied mathematics and computation</title><description>In this paper we show new exact solutions for a type of generalized sine-Gordon equation which is obtained by constructing a Lagrange function for a dynamical coupled system of oscillators. We convert it into a nonlinear system by perturbing the potential energy from a point of view of an approach proposed by Fermi
[1].</description><subject>Dynamical systems</subject><subject>Exact sciences and technology</subject><subject>Exact solutions</subject><subject>Global analysis, analysis on manifolds</subject><subject>Josephson junctions</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Nonlinear dynamics</subject><subject>Nonlinear PDE</subject><subject>Nonlinearity</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Ordinary differential equations</subject><subject>Oscillators</subject><subject>Partial differential equations</subject><subject>Perturbed equation</subject><subject>Potential energy</subject><subject>Sciences and techniques of general use</subject><subject>Sine-Gordon equation</subject><subject>Soliton solution</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><subject>Traveling wave solution</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAQDaLguvoDvPWyeOo60zRtgidZ1g9Y8KLnkE2nkKVt1qQr-u9N2cWjzINhmPfeMI-xW4QlAlb3u6Xp7bIAUMsJiGdshrLmuahKdc5maVHlHIBfsqsYdwBQV1jO2GL9beyYRd8dRueHmLU-ZCYb_NC5gUzIet9Qd80uWtNFujn1Oft4Wr-vXvLN2_Pr6nGTWy7UmEuBheDSbhEKCQJxS7Uq00xUV40AW0oiJCV4aSxg0ZKSW1HZxmBjZd3yObs7-u6D_zxQHHXvoqWuMwP5Q9QKsE7eQiUmHpk2-BgDtXofXG_Cj0bQUyJ6p1MiekpET0BMmsXJ3URrujaYwbr4Jyy45CpV4j0ceZRe_XIUdLSOBkuNC2RH3Xj3z5VfE750Lg</recordid><startdate>20101015</startdate><enddate>20101015</enddate><creator>Hernández, Jairo Ernesto Castillo</creator><creator>Salas, Alvaro H.</creator><creator>Lugo, José Gonzalo Escobar</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20101015</creationdate><title>Exact solutions for a nonlinear model</title><author>Hernández, Jairo Ernesto Castillo ; Salas, Alvaro H. ; Lugo, José Gonzalo Escobar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-8512538cb10280511be7948cbee76d50c48ee1e9534ac012fe98b56cda1dc87f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Dynamical systems</topic><topic>Exact sciences and technology</topic><topic>Exact solutions</topic><topic>Global analysis, analysis on manifolds</topic><topic>Josephson junctions</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Nonlinear dynamics</topic><topic>Nonlinear PDE</topic><topic>Nonlinearity</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Ordinary differential equations</topic><topic>Oscillators</topic><topic>Partial differential equations</topic><topic>Perturbed equation</topic><topic>Potential energy</topic><topic>Sciences and techniques of general use</topic><topic>Sine-Gordon equation</topic><topic>Soliton solution</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><topic>Traveling wave solution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hernández, Jairo Ernesto Castillo</creatorcontrib><creatorcontrib>Salas, Alvaro H.</creatorcontrib><creatorcontrib>Lugo, José Gonzalo Escobar</creatorcontrib><creatorcontrib>Grupo CIBAVIR</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hernández, Jairo Ernesto Castillo</au><au>Salas, Alvaro H.</au><au>Lugo, José Gonzalo Escobar</au><aucorp>Grupo CIBAVIR</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exact solutions for a nonlinear model</atitle><jtitle>Applied mathematics and computation</jtitle><date>2010-10-15</date><risdate>2010</risdate><volume>217</volume><issue>4</issue><spage>1646</spage><epage>1651</epage><pages>1646-1651</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><coden>AMHCBQ</coden><abstract>In this paper we show new exact solutions for a type of generalized sine-Gordon equation which is obtained by constructing a Lagrange function for a dynamical coupled system of oscillators. We convert it into a nonlinear system by perturbing the potential energy from a point of view of an approach proposed by Fermi
[1].</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2009.09.011</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0096-3003 |
ispartof | Applied mathematics and computation, 2010-10, Vol.217 (4), p.1646-1651 |
issn | 0096-3003 1873-5649 |
language | eng |
recordid | cdi_proquest_miscellaneous_901710259 |
source | Elsevier ScienceDirect Journals |
subjects | Dynamical systems Exact sciences and technology Exact solutions Global analysis, analysis on manifolds Josephson junctions Mathematical analysis Mathematical models Mathematics Nonlinear dynamics Nonlinear PDE Nonlinearity Numerical analysis Numerical analysis. Scientific computation Ordinary differential equations Oscillators Partial differential equations Perturbed equation Potential energy Sciences and techniques of general use Sine-Gordon equation Soliton solution Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds Traveling wave solution |
title | Exact solutions for a nonlinear model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A08%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exact%20solutions%20for%20a%20nonlinear%20model&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Hern%C3%A1ndez,%20Jairo%20Ernesto%20Castillo&rft.aucorp=Grupo%20CIBAVIR&rft.date=2010-10-15&rft.volume=217&rft.issue=4&rft.spage=1646&rft.epage=1651&rft.pages=1646-1651&rft.issn=0096-3003&rft.eissn=1873-5649&rft.coden=AMHCBQ&rft_id=info:doi/10.1016/j.amc.2009.09.011&rft_dat=%3Cproquest_cross%3E901710259%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=901710259&rft_id=info:pmid/&rft_els_id=S0096300309008091&rfr_iscdi=true |