Exact solutions for a nonlinear model

In this paper we show new exact solutions for a type of generalized sine-Gordon equation which is obtained by constructing a Lagrange function for a dynamical coupled system of oscillators. We convert it into a nonlinear system by perturbing the potential energy from a point of view of an approach p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation 2010-10, Vol.217 (4), p.1646-1651
Hauptverfasser: Hernández, Jairo Ernesto Castillo, Salas, Alvaro H., Lugo, José Gonzalo Escobar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1651
container_issue 4
container_start_page 1646
container_title Applied mathematics and computation
container_volume 217
creator Hernández, Jairo Ernesto Castillo
Salas, Alvaro H.
Lugo, José Gonzalo Escobar
description In this paper we show new exact solutions for a type of generalized sine-Gordon equation which is obtained by constructing a Lagrange function for a dynamical coupled system of oscillators. We convert it into a nonlinear system by perturbing the potential energy from a point of view of an approach proposed by Fermi [1].
doi_str_mv 10.1016/j.amc.2009.09.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901710259</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300309008091</els_id><sourcerecordid>901710259</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-8512538cb10280511be7948cbee76d50c48ee1e9534ac012fe98b56cda1dc87f3</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLguvoDvPWyeOo60zRtgidZ1g9Y8KLnkE2nkKVt1qQr-u9N2cWjzINhmPfeMI-xW4QlAlb3u6Xp7bIAUMsJiGdshrLmuahKdc5maVHlHIBfsqsYdwBQV1jO2GL9beyYRd8dRueHmLU-ZCYb_NC5gUzIet9Qd80uWtNFujn1Oft4Wr-vXvLN2_Pr6nGTWy7UmEuBheDSbhEKCQJxS7Uq00xUV40AW0oiJCV4aSxg0ZKSW1HZxmBjZd3yObs7-u6D_zxQHHXvoqWuMwP5Q9QKsE7eQiUmHpk2-BgDtXofXG_Cj0bQUyJ6p1MiekpET0BMmsXJ3URrujaYwbr4Jyy45CpV4j0ceZRe_XIUdLSOBkuNC2RH3Xj3z5VfE750Lg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901710259</pqid></control><display><type>article</type><title>Exact solutions for a nonlinear model</title><source>Elsevier ScienceDirect Journals</source><creator>Hernández, Jairo Ernesto Castillo ; Salas, Alvaro H. ; Lugo, José Gonzalo Escobar</creator><creatorcontrib>Hernández, Jairo Ernesto Castillo ; Salas, Alvaro H. ; Lugo, José Gonzalo Escobar ; Grupo CIBAVIR</creatorcontrib><description>In this paper we show new exact solutions for a type of generalized sine-Gordon equation which is obtained by constructing a Lagrange function for a dynamical coupled system of oscillators. We convert it into a nonlinear system by perturbing the potential energy from a point of view of an approach proposed by Fermi [1].</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2009.09.011</identifier><identifier>CODEN: AMHCBQ</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Dynamical systems ; Exact sciences and technology ; Exact solutions ; Global analysis, analysis on manifolds ; Josephson junctions ; Mathematical analysis ; Mathematical models ; Mathematics ; Nonlinear dynamics ; Nonlinear PDE ; Nonlinearity ; Numerical analysis ; Numerical analysis. Scientific computation ; Ordinary differential equations ; Oscillators ; Partial differential equations ; Perturbed equation ; Potential energy ; Sciences and techniques of general use ; Sine-Gordon equation ; Soliton solution ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds ; Traveling wave solution</subject><ispartof>Applied mathematics and computation, 2010-10, Vol.217 (4), p.1646-1651</ispartof><rights>2009 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-8512538cb10280511be7948cbee76d50c48ee1e9534ac012fe98b56cda1dc87f3</citedby><cites>FETCH-LOGICAL-c359t-8512538cb10280511be7948cbee76d50c48ee1e9534ac012fe98b56cda1dc87f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.amc.2009.09.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23839393$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hernández, Jairo Ernesto Castillo</creatorcontrib><creatorcontrib>Salas, Alvaro H.</creatorcontrib><creatorcontrib>Lugo, José Gonzalo Escobar</creatorcontrib><creatorcontrib>Grupo CIBAVIR</creatorcontrib><title>Exact solutions for a nonlinear model</title><title>Applied mathematics and computation</title><description>In this paper we show new exact solutions for a type of generalized sine-Gordon equation which is obtained by constructing a Lagrange function for a dynamical coupled system of oscillators. We convert it into a nonlinear system by perturbing the potential energy from a point of view of an approach proposed by Fermi [1].</description><subject>Dynamical systems</subject><subject>Exact sciences and technology</subject><subject>Exact solutions</subject><subject>Global analysis, analysis on manifolds</subject><subject>Josephson junctions</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Nonlinear dynamics</subject><subject>Nonlinear PDE</subject><subject>Nonlinearity</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Ordinary differential equations</subject><subject>Oscillators</subject><subject>Partial differential equations</subject><subject>Perturbed equation</subject><subject>Potential energy</subject><subject>Sciences and techniques of general use</subject><subject>Sine-Gordon equation</subject><subject>Soliton solution</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><subject>Traveling wave solution</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAQDaLguvoDvPWyeOo60zRtgidZ1g9Y8KLnkE2nkKVt1qQr-u9N2cWjzINhmPfeMI-xW4QlAlb3u6Xp7bIAUMsJiGdshrLmuahKdc5maVHlHIBfsqsYdwBQV1jO2GL9beyYRd8dRueHmLU-ZCYb_NC5gUzIet9Qd80uWtNFujn1Oft4Wr-vXvLN2_Pr6nGTWy7UmEuBheDSbhEKCQJxS7Uq00xUV40AW0oiJCV4aSxg0ZKSW1HZxmBjZd3yObs7-u6D_zxQHHXvoqWuMwP5Q9QKsE7eQiUmHpk2-BgDtXofXG_Cj0bQUyJ6p1MiekpET0BMmsXJ3URrujaYwbr4Jyy45CpV4j0ceZRe_XIUdLSOBkuNC2RH3Xj3z5VfE750Lg</recordid><startdate>20101015</startdate><enddate>20101015</enddate><creator>Hernández, Jairo Ernesto Castillo</creator><creator>Salas, Alvaro H.</creator><creator>Lugo, José Gonzalo Escobar</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20101015</creationdate><title>Exact solutions for a nonlinear model</title><author>Hernández, Jairo Ernesto Castillo ; Salas, Alvaro H. ; Lugo, José Gonzalo Escobar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-8512538cb10280511be7948cbee76d50c48ee1e9534ac012fe98b56cda1dc87f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Dynamical systems</topic><topic>Exact sciences and technology</topic><topic>Exact solutions</topic><topic>Global analysis, analysis on manifolds</topic><topic>Josephson junctions</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Nonlinear dynamics</topic><topic>Nonlinear PDE</topic><topic>Nonlinearity</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Ordinary differential equations</topic><topic>Oscillators</topic><topic>Partial differential equations</topic><topic>Perturbed equation</topic><topic>Potential energy</topic><topic>Sciences and techniques of general use</topic><topic>Sine-Gordon equation</topic><topic>Soliton solution</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><topic>Traveling wave solution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hernández, Jairo Ernesto Castillo</creatorcontrib><creatorcontrib>Salas, Alvaro H.</creatorcontrib><creatorcontrib>Lugo, José Gonzalo Escobar</creatorcontrib><creatorcontrib>Grupo CIBAVIR</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hernández, Jairo Ernesto Castillo</au><au>Salas, Alvaro H.</au><au>Lugo, José Gonzalo Escobar</au><aucorp>Grupo CIBAVIR</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exact solutions for a nonlinear model</atitle><jtitle>Applied mathematics and computation</jtitle><date>2010-10-15</date><risdate>2010</risdate><volume>217</volume><issue>4</issue><spage>1646</spage><epage>1651</epage><pages>1646-1651</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><coden>AMHCBQ</coden><abstract>In this paper we show new exact solutions for a type of generalized sine-Gordon equation which is obtained by constructing a Lagrange function for a dynamical coupled system of oscillators. We convert it into a nonlinear system by perturbing the potential energy from a point of view of an approach proposed by Fermi [1].</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2009.09.011</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0096-3003
ispartof Applied mathematics and computation, 2010-10, Vol.217 (4), p.1646-1651
issn 0096-3003
1873-5649
language eng
recordid cdi_proquest_miscellaneous_901710259
source Elsevier ScienceDirect Journals
subjects Dynamical systems
Exact sciences and technology
Exact solutions
Global analysis, analysis on manifolds
Josephson junctions
Mathematical analysis
Mathematical models
Mathematics
Nonlinear dynamics
Nonlinear PDE
Nonlinearity
Numerical analysis
Numerical analysis. Scientific computation
Ordinary differential equations
Oscillators
Partial differential equations
Perturbed equation
Potential energy
Sciences and techniques of general use
Sine-Gordon equation
Soliton solution
Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds
Traveling wave solution
title Exact solutions for a nonlinear model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A08%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exact%20solutions%20for%20a%20nonlinear%20model&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Hern%C3%A1ndez,%20Jairo%20Ernesto%20Castillo&rft.aucorp=Grupo%20CIBAVIR&rft.date=2010-10-15&rft.volume=217&rft.issue=4&rft.spage=1646&rft.epage=1651&rft.pages=1646-1651&rft.issn=0096-3003&rft.eissn=1873-5649&rft.coden=AMHCBQ&rft_id=info:doi/10.1016/j.amc.2009.09.011&rft_dat=%3Cproquest_cross%3E901710259%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=901710259&rft_id=info:pmid/&rft_els_id=S0096300309008091&rfr_iscdi=true