Influences of wind-break wall configurations upon flow and heat transfer characteristics of air-cooled condensers in a power plant

Wind-break wall is considered to be an effective way to weaken the inlet flow distortions and hot plume recirculation of air-cooled condensers in a power plant. It is of use to investigate the effects of wind-break wall configurations on the thermo-flow performances of air-cooled condensers. The phy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of thermal sciences 2011-10, Vol.50 (10), p.2050-2061
Hauptverfasser: Yang, L.J., Du, X.Z., Yang, Y.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2061
container_issue 10
container_start_page 2050
container_title International journal of thermal sciences
container_volume 50
creator Yang, L.J.
Du, X.Z.
Yang, Y.P.
description Wind-break wall is considered to be an effective way to weaken the inlet flow distortions and hot plume recirculation of air-cooled condensers in a power plant. It is of use to investigate the effects of wind-break wall configurations on the thermo-flow performances of air-cooled condensers. The physical and mathematical models of the air-side fluid and heat flows for the air-cooled condensers in a representative 2 × 600 MW direct dry cooling power plant are established with three different configurations of the wind-break wall. The volumetric flow rate and heat rejection of the air-cooled condensers are calculated and compared on the basis of the simulation results of air velocity and temperature fields at various ambient wind speeds and directions. The results show that the thermo-flow performances of the air-cooled condensers are improved by the extensions of the inner and outer walkways and elevation of the wind-break wall, especially at the wind directions ranging between 0° and 90°. The improvement thanks to the width increase of the inner or outer walkway is superior to that resulting from the elevated wind-break wall.
doi_str_mv 10.1016/j.ijthermalsci.2011.05.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901708295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1290072911001499</els_id><sourcerecordid>901708295</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-497c55152aa6e7c27823168af3afe310914aef7de40f5b6b13a2145504b4b84a3</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhiMEEqX0P1hIiFPC2HHihBsqX5UqcWnP1sQZs16ydrAdVlz7y_GyFeLIaebwzjPjx1X1ikPDgfdv943b5x3FAy7JuEYA5w10DYB8Ul1wpYZa8r5_WnoxQg1KjM-rFyntAUCNMF5UDzfeLht5Q4kFy47Oz_UUCb-zIy4LM8Fb922LmF3wiW1r8Mwu4cjQz2xHmFmO6JOlyMwOI5pM0aXszB8aulibEBaaT6CZfKKYmPMM2RqOZWZd0OeX1TNbzqerx3pZ3X_6eHf9pb79-vnm-v1tbdqhz7Uclek63gnEnpQRahAt7we0LVpqOYxcIlk1kwTbTf3EWxRcdh3ISU6DxPayenPmrjH82ChlfXDJ0FJuoLAlPQJXMIixK8l356SJIaVIVq_RHTD-0hz0ybve63-965N3DZ0u3svw68c1mAwutvgxLv0lCCnbVkhech_OOSpv_uko6kI6fcTsIpms5-D-Z91vXPGiWQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901708295</pqid></control><display><type>article</type><title>Influences of wind-break wall configurations upon flow and heat transfer characteristics of air-cooled condensers in a power plant</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Yang, L.J. ; Du, X.Z. ; Yang, Y.P.</creator><creatorcontrib>Yang, L.J. ; Du, X.Z. ; Yang, Y.P.</creatorcontrib><description>Wind-break wall is considered to be an effective way to weaken the inlet flow distortions and hot plume recirculation of air-cooled condensers in a power plant. It is of use to investigate the effects of wind-break wall configurations on the thermo-flow performances of air-cooled condensers. The physical and mathematical models of the air-side fluid and heat flows for the air-cooled condensers in a representative 2 × 600 MW direct dry cooling power plant are established with three different configurations of the wind-break wall. The volumetric flow rate and heat rejection of the air-cooled condensers are calculated and compared on the basis of the simulation results of air velocity and temperature fields at various ambient wind speeds and directions. The results show that the thermo-flow performances of the air-cooled condensers are improved by the extensions of the inner and outer walkways and elevation of the wind-break wall, especially at the wind directions ranging between 0° and 90°. The improvement thanks to the width increase of the inner or outer walkway is superior to that resulting from the elevated wind-break wall.</description><identifier>ISSN: 1290-0729</identifier><identifier>EISSN: 1778-4166</identifier><identifier>DOI: 10.1016/j.ijthermalsci.2011.05.004</identifier><language>eng</language><publisher>Kidlington: Elsevier Masson SAS</publisher><subject>Air-cooled condenser ; Applied sciences ; Cooling ; Devices using thermal energy ; Electric power generation ; Electric power plants ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Flow and heat transfer characteristics ; Heat exchangers (included heat transformers, condensers, cooling towers) ; Heat transfer ; Hot plume recirculation ; Installations for energy generation and conversion: thermal and electrical energy ; Mathematical models ; Rejection ; Thermal power plants ; Walkways ; Walls ; Wind speed and direction ; Wind-break wall</subject><ispartof>International journal of thermal sciences, 2011-10, Vol.50 (10), p.2050-2061</ispartof><rights>2011 Elsevier Masson SAS</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-497c55152aa6e7c27823168af3afe310914aef7de40f5b6b13a2145504b4b84a3</citedby><cites>FETCH-LOGICAL-c386t-497c55152aa6e7c27823168af3afe310914aef7de40f5b6b13a2145504b4b84a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijthermalsci.2011.05.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24433241$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, L.J.</creatorcontrib><creatorcontrib>Du, X.Z.</creatorcontrib><creatorcontrib>Yang, Y.P.</creatorcontrib><title>Influences of wind-break wall configurations upon flow and heat transfer characteristics of air-cooled condensers in a power plant</title><title>International journal of thermal sciences</title><description>Wind-break wall is considered to be an effective way to weaken the inlet flow distortions and hot plume recirculation of air-cooled condensers in a power plant. It is of use to investigate the effects of wind-break wall configurations on the thermo-flow performances of air-cooled condensers. The physical and mathematical models of the air-side fluid and heat flows for the air-cooled condensers in a representative 2 × 600 MW direct dry cooling power plant are established with three different configurations of the wind-break wall. The volumetric flow rate and heat rejection of the air-cooled condensers are calculated and compared on the basis of the simulation results of air velocity and temperature fields at various ambient wind speeds and directions. The results show that the thermo-flow performances of the air-cooled condensers are improved by the extensions of the inner and outer walkways and elevation of the wind-break wall, especially at the wind directions ranging between 0° and 90°. The improvement thanks to the width increase of the inner or outer walkway is superior to that resulting from the elevated wind-break wall.</description><subject>Air-cooled condenser</subject><subject>Applied sciences</subject><subject>Cooling</subject><subject>Devices using thermal energy</subject><subject>Electric power generation</subject><subject>Electric power plants</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Flow and heat transfer characteristics</subject><subject>Heat exchangers (included heat transformers, condensers, cooling towers)</subject><subject>Heat transfer</subject><subject>Hot plume recirculation</subject><subject>Installations for energy generation and conversion: thermal and electrical energy</subject><subject>Mathematical models</subject><subject>Rejection</subject><subject>Thermal power plants</subject><subject>Walkways</subject><subject>Walls</subject><subject>Wind speed and direction</subject><subject>Wind-break wall</subject><issn>1290-0729</issn><issn>1778-4166</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkU1v1DAQhiMEEqX0P1hIiFPC2HHihBsqX5UqcWnP1sQZs16ydrAdVlz7y_GyFeLIaebwzjPjx1X1ikPDgfdv943b5x3FAy7JuEYA5w10DYB8Ul1wpYZa8r5_WnoxQg1KjM-rFyntAUCNMF5UDzfeLht5Q4kFy47Oz_UUCb-zIy4LM8Fb922LmF3wiW1r8Mwu4cjQz2xHmFmO6JOlyMwOI5pM0aXszB8aulibEBaaT6CZfKKYmPMM2RqOZWZd0OeX1TNbzqerx3pZ3X_6eHf9pb79-vnm-v1tbdqhz7Uclek63gnEnpQRahAt7we0LVpqOYxcIlk1kwTbTf3EWxRcdh3ISU6DxPayenPmrjH82ChlfXDJ0FJuoLAlPQJXMIixK8l356SJIaVIVq_RHTD-0hz0ybve63-965N3DZ0u3svw68c1mAwutvgxLv0lCCnbVkhech_OOSpv_uko6kI6fcTsIpms5-D-Z91vXPGiWQ</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Yang, L.J.</creator><creator>Du, X.Z.</creator><creator>Yang, Y.P.</creator><general>Elsevier Masson SAS</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20111001</creationdate><title>Influences of wind-break wall configurations upon flow and heat transfer characteristics of air-cooled condensers in a power plant</title><author>Yang, L.J. ; Du, X.Z. ; Yang, Y.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-497c55152aa6e7c27823168af3afe310914aef7de40f5b6b13a2145504b4b84a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Air-cooled condenser</topic><topic>Applied sciences</topic><topic>Cooling</topic><topic>Devices using thermal energy</topic><topic>Electric power generation</topic><topic>Electric power plants</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Flow and heat transfer characteristics</topic><topic>Heat exchangers (included heat transformers, condensers, cooling towers)</topic><topic>Heat transfer</topic><topic>Hot plume recirculation</topic><topic>Installations for energy generation and conversion: thermal and electrical energy</topic><topic>Mathematical models</topic><topic>Rejection</topic><topic>Thermal power plants</topic><topic>Walkways</topic><topic>Walls</topic><topic>Wind speed and direction</topic><topic>Wind-break wall</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, L.J.</creatorcontrib><creatorcontrib>Du, X.Z.</creatorcontrib><creatorcontrib>Yang, Y.P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of thermal sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, L.J.</au><au>Du, X.Z.</au><au>Yang, Y.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influences of wind-break wall configurations upon flow and heat transfer characteristics of air-cooled condensers in a power plant</atitle><jtitle>International journal of thermal sciences</jtitle><date>2011-10-01</date><risdate>2011</risdate><volume>50</volume><issue>10</issue><spage>2050</spage><epage>2061</epage><pages>2050-2061</pages><issn>1290-0729</issn><eissn>1778-4166</eissn><abstract>Wind-break wall is considered to be an effective way to weaken the inlet flow distortions and hot plume recirculation of air-cooled condensers in a power plant. It is of use to investigate the effects of wind-break wall configurations on the thermo-flow performances of air-cooled condensers. The physical and mathematical models of the air-side fluid and heat flows for the air-cooled condensers in a representative 2 × 600 MW direct dry cooling power plant are established with three different configurations of the wind-break wall. The volumetric flow rate and heat rejection of the air-cooled condensers are calculated and compared on the basis of the simulation results of air velocity and temperature fields at various ambient wind speeds and directions. The results show that the thermo-flow performances of the air-cooled condensers are improved by the extensions of the inner and outer walkways and elevation of the wind-break wall, especially at the wind directions ranging between 0° and 90°. The improvement thanks to the width increase of the inner or outer walkway is superior to that resulting from the elevated wind-break wall.</abstract><cop>Kidlington</cop><pub>Elsevier Masson SAS</pub><doi>10.1016/j.ijthermalsci.2011.05.004</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1290-0729
ispartof International journal of thermal sciences, 2011-10, Vol.50 (10), p.2050-2061
issn 1290-0729
1778-4166
language eng
recordid cdi_proquest_miscellaneous_901708295
source Elsevier ScienceDirect Journals Complete
subjects Air-cooled condenser
Applied sciences
Cooling
Devices using thermal energy
Electric power generation
Electric power plants
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Flow and heat transfer characteristics
Heat exchangers (included heat transformers, condensers, cooling towers)
Heat transfer
Hot plume recirculation
Installations for energy generation and conversion: thermal and electrical energy
Mathematical models
Rejection
Thermal power plants
Walkways
Walls
Wind speed and direction
Wind-break wall
title Influences of wind-break wall configurations upon flow and heat transfer characteristics of air-cooled condensers in a power plant
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T04%3A23%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influences%20of%20wind-break%20wall%20configurations%20upon%20flow%20and%20heat%20transfer%20characteristics%20of%20air-cooled%20condensers%20in%20a%20power%20plant&rft.jtitle=International%20journal%20of%20thermal%20sciences&rft.au=Yang,%20L.J.&rft.date=2011-10-01&rft.volume=50&rft.issue=10&rft.spage=2050&rft.epage=2061&rft.pages=2050-2061&rft.issn=1290-0729&rft.eissn=1778-4166&rft_id=info:doi/10.1016/j.ijthermalsci.2011.05.004&rft_dat=%3Cproquest_cross%3E901708295%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=901708295&rft_id=info:pmid/&rft_els_id=S1290072911001499&rfr_iscdi=true