Influences of wind-break wall configurations upon flow and heat transfer characteristics of air-cooled condensers in a power plant
Wind-break wall is considered to be an effective way to weaken the inlet flow distortions and hot plume recirculation of air-cooled condensers in a power plant. It is of use to investigate the effects of wind-break wall configurations on the thermo-flow performances of air-cooled condensers. The phy...
Gespeichert in:
Veröffentlicht in: | International journal of thermal sciences 2011-10, Vol.50 (10), p.2050-2061 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2061 |
---|---|
container_issue | 10 |
container_start_page | 2050 |
container_title | International journal of thermal sciences |
container_volume | 50 |
creator | Yang, L.J. Du, X.Z. Yang, Y.P. |
description | Wind-break wall is considered to be an effective way to weaken the inlet flow distortions and hot plume recirculation of air-cooled condensers in a power plant. It is of use to investigate the effects of wind-break wall configurations on the thermo-flow performances of air-cooled condensers. The physical and mathematical models of the air-side fluid and heat flows for the air-cooled condensers in a representative 2 × 600 MW direct dry cooling power plant are established with three different configurations of the wind-break wall. The volumetric flow rate and heat rejection of the air-cooled condensers are calculated and compared on the basis of the simulation results of air velocity and temperature fields at various ambient wind speeds and directions. The results show that the thermo-flow performances of the air-cooled condensers are improved by the extensions of the inner and outer walkways and elevation of the wind-break wall, especially at the wind directions ranging between 0° and 90°. The improvement thanks to the width increase of the inner or outer walkway is superior to that resulting from the elevated wind-break wall. |
doi_str_mv | 10.1016/j.ijthermalsci.2011.05.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901708295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1290072911001499</els_id><sourcerecordid>901708295</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-497c55152aa6e7c27823168af3afe310914aef7de40f5b6b13a2145504b4b84a3</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhiMEEqX0P1hIiFPC2HHihBsqX5UqcWnP1sQZs16ydrAdVlz7y_GyFeLIaebwzjPjx1X1ikPDgfdv943b5x3FAy7JuEYA5w10DYB8Ul1wpYZa8r5_WnoxQg1KjM-rFyntAUCNMF5UDzfeLht5Q4kFy47Oz_UUCb-zIy4LM8Fb922LmF3wiW1r8Mwu4cjQz2xHmFmO6JOlyMwOI5pM0aXszB8aulibEBaaT6CZfKKYmPMM2RqOZWZd0OeX1TNbzqerx3pZ3X_6eHf9pb79-vnm-v1tbdqhz7Uclek63gnEnpQRahAt7we0LVpqOYxcIlk1kwTbTf3EWxRcdh3ISU6DxPayenPmrjH82ChlfXDJ0FJuoLAlPQJXMIixK8l356SJIaVIVq_RHTD-0hz0ybve63-965N3DZ0u3svw68c1mAwutvgxLv0lCCnbVkhech_OOSpv_uko6kI6fcTsIpms5-D-Z91vXPGiWQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901708295</pqid></control><display><type>article</type><title>Influences of wind-break wall configurations upon flow and heat transfer characteristics of air-cooled condensers in a power plant</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Yang, L.J. ; Du, X.Z. ; Yang, Y.P.</creator><creatorcontrib>Yang, L.J. ; Du, X.Z. ; Yang, Y.P.</creatorcontrib><description>Wind-break wall is considered to be an effective way to weaken the inlet flow distortions and hot plume recirculation of air-cooled condensers in a power plant. It is of use to investigate the effects of wind-break wall configurations on the thermo-flow performances of air-cooled condensers. The physical and mathematical models of the air-side fluid and heat flows for the air-cooled condensers in a representative 2 × 600 MW direct dry cooling power plant are established with three different configurations of the wind-break wall. The volumetric flow rate and heat rejection of the air-cooled condensers are calculated and compared on the basis of the simulation results of air velocity and temperature fields at various ambient wind speeds and directions. The results show that the thermo-flow performances of the air-cooled condensers are improved by the extensions of the inner and outer walkways and elevation of the wind-break wall, especially at the wind directions ranging between 0° and 90°. The improvement thanks to the width increase of the inner or outer walkway is superior to that resulting from the elevated wind-break wall.</description><identifier>ISSN: 1290-0729</identifier><identifier>EISSN: 1778-4166</identifier><identifier>DOI: 10.1016/j.ijthermalsci.2011.05.004</identifier><language>eng</language><publisher>Kidlington: Elsevier Masson SAS</publisher><subject>Air-cooled condenser ; Applied sciences ; Cooling ; Devices using thermal energy ; Electric power generation ; Electric power plants ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Flow and heat transfer characteristics ; Heat exchangers (included heat transformers, condensers, cooling towers) ; Heat transfer ; Hot plume recirculation ; Installations for energy generation and conversion: thermal and electrical energy ; Mathematical models ; Rejection ; Thermal power plants ; Walkways ; Walls ; Wind speed and direction ; Wind-break wall</subject><ispartof>International journal of thermal sciences, 2011-10, Vol.50 (10), p.2050-2061</ispartof><rights>2011 Elsevier Masson SAS</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-497c55152aa6e7c27823168af3afe310914aef7de40f5b6b13a2145504b4b84a3</citedby><cites>FETCH-LOGICAL-c386t-497c55152aa6e7c27823168af3afe310914aef7de40f5b6b13a2145504b4b84a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijthermalsci.2011.05.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24433241$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, L.J.</creatorcontrib><creatorcontrib>Du, X.Z.</creatorcontrib><creatorcontrib>Yang, Y.P.</creatorcontrib><title>Influences of wind-break wall configurations upon flow and heat transfer characteristics of air-cooled condensers in a power plant</title><title>International journal of thermal sciences</title><description>Wind-break wall is considered to be an effective way to weaken the inlet flow distortions and hot plume recirculation of air-cooled condensers in a power plant. It is of use to investigate the effects of wind-break wall configurations on the thermo-flow performances of air-cooled condensers. The physical and mathematical models of the air-side fluid and heat flows for the air-cooled condensers in a representative 2 × 600 MW direct dry cooling power plant are established with three different configurations of the wind-break wall. The volumetric flow rate and heat rejection of the air-cooled condensers are calculated and compared on the basis of the simulation results of air velocity and temperature fields at various ambient wind speeds and directions. The results show that the thermo-flow performances of the air-cooled condensers are improved by the extensions of the inner and outer walkways and elevation of the wind-break wall, especially at the wind directions ranging between 0° and 90°. The improvement thanks to the width increase of the inner or outer walkway is superior to that resulting from the elevated wind-break wall.</description><subject>Air-cooled condenser</subject><subject>Applied sciences</subject><subject>Cooling</subject><subject>Devices using thermal energy</subject><subject>Electric power generation</subject><subject>Electric power plants</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Flow and heat transfer characteristics</subject><subject>Heat exchangers (included heat transformers, condensers, cooling towers)</subject><subject>Heat transfer</subject><subject>Hot plume recirculation</subject><subject>Installations for energy generation and conversion: thermal and electrical energy</subject><subject>Mathematical models</subject><subject>Rejection</subject><subject>Thermal power plants</subject><subject>Walkways</subject><subject>Walls</subject><subject>Wind speed and direction</subject><subject>Wind-break wall</subject><issn>1290-0729</issn><issn>1778-4166</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkU1v1DAQhiMEEqX0P1hIiFPC2HHihBsqX5UqcWnP1sQZs16ydrAdVlz7y_GyFeLIaebwzjPjx1X1ikPDgfdv943b5x3FAy7JuEYA5w10DYB8Ul1wpYZa8r5_WnoxQg1KjM-rFyntAUCNMF5UDzfeLht5Q4kFy47Oz_UUCb-zIy4LM8Fb922LmF3wiW1r8Mwu4cjQz2xHmFmO6JOlyMwOI5pM0aXszB8aulibEBaaT6CZfKKYmPMM2RqOZWZd0OeX1TNbzqerx3pZ3X_6eHf9pb79-vnm-v1tbdqhz7Uclek63gnEnpQRahAt7we0LVpqOYxcIlk1kwTbTf3EWxRcdh3ISU6DxPayenPmrjH82ChlfXDJ0FJuoLAlPQJXMIixK8l356SJIaVIVq_RHTD-0hz0ybve63-965N3DZ0u3svw68c1mAwutvgxLv0lCCnbVkhech_OOSpv_uko6kI6fcTsIpms5-D-Z91vXPGiWQ</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Yang, L.J.</creator><creator>Du, X.Z.</creator><creator>Yang, Y.P.</creator><general>Elsevier Masson SAS</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20111001</creationdate><title>Influences of wind-break wall configurations upon flow and heat transfer characteristics of air-cooled condensers in a power plant</title><author>Yang, L.J. ; Du, X.Z. ; Yang, Y.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-497c55152aa6e7c27823168af3afe310914aef7de40f5b6b13a2145504b4b84a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Air-cooled condenser</topic><topic>Applied sciences</topic><topic>Cooling</topic><topic>Devices using thermal energy</topic><topic>Electric power generation</topic><topic>Electric power plants</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Flow and heat transfer characteristics</topic><topic>Heat exchangers (included heat transformers, condensers, cooling towers)</topic><topic>Heat transfer</topic><topic>Hot plume recirculation</topic><topic>Installations for energy generation and conversion: thermal and electrical energy</topic><topic>Mathematical models</topic><topic>Rejection</topic><topic>Thermal power plants</topic><topic>Walkways</topic><topic>Walls</topic><topic>Wind speed and direction</topic><topic>Wind-break wall</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, L.J.</creatorcontrib><creatorcontrib>Du, X.Z.</creatorcontrib><creatorcontrib>Yang, Y.P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of thermal sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, L.J.</au><au>Du, X.Z.</au><au>Yang, Y.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influences of wind-break wall configurations upon flow and heat transfer characteristics of air-cooled condensers in a power plant</atitle><jtitle>International journal of thermal sciences</jtitle><date>2011-10-01</date><risdate>2011</risdate><volume>50</volume><issue>10</issue><spage>2050</spage><epage>2061</epage><pages>2050-2061</pages><issn>1290-0729</issn><eissn>1778-4166</eissn><abstract>Wind-break wall is considered to be an effective way to weaken the inlet flow distortions and hot plume recirculation of air-cooled condensers in a power plant. It is of use to investigate the effects of wind-break wall configurations on the thermo-flow performances of air-cooled condensers. The physical and mathematical models of the air-side fluid and heat flows for the air-cooled condensers in a representative 2 × 600 MW direct dry cooling power plant are established with three different configurations of the wind-break wall. The volumetric flow rate and heat rejection of the air-cooled condensers are calculated and compared on the basis of the simulation results of air velocity and temperature fields at various ambient wind speeds and directions. The results show that the thermo-flow performances of the air-cooled condensers are improved by the extensions of the inner and outer walkways and elevation of the wind-break wall, especially at the wind directions ranging between 0° and 90°. The improvement thanks to the width increase of the inner or outer walkway is superior to that resulting from the elevated wind-break wall.</abstract><cop>Kidlington</cop><pub>Elsevier Masson SAS</pub><doi>10.1016/j.ijthermalsci.2011.05.004</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1290-0729 |
ispartof | International journal of thermal sciences, 2011-10, Vol.50 (10), p.2050-2061 |
issn | 1290-0729 1778-4166 |
language | eng |
recordid | cdi_proquest_miscellaneous_901708295 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Air-cooled condenser Applied sciences Cooling Devices using thermal energy Electric power generation Electric power plants Energy Energy. Thermal use of fuels Exact sciences and technology Flow and heat transfer characteristics Heat exchangers (included heat transformers, condensers, cooling towers) Heat transfer Hot plume recirculation Installations for energy generation and conversion: thermal and electrical energy Mathematical models Rejection Thermal power plants Walkways Walls Wind speed and direction Wind-break wall |
title | Influences of wind-break wall configurations upon flow and heat transfer characteristics of air-cooled condensers in a power plant |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T04%3A23%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influences%20of%20wind-break%20wall%20configurations%20upon%20flow%20and%20heat%20transfer%20characteristics%20of%20air-cooled%20condensers%20in%20a%20power%20plant&rft.jtitle=International%20journal%20of%20thermal%20sciences&rft.au=Yang,%20L.J.&rft.date=2011-10-01&rft.volume=50&rft.issue=10&rft.spage=2050&rft.epage=2061&rft.pages=2050-2061&rft.issn=1290-0729&rft.eissn=1778-4166&rft_id=info:doi/10.1016/j.ijthermalsci.2011.05.004&rft_dat=%3Cproquest_cross%3E901708295%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=901708295&rft_id=info:pmid/&rft_els_id=S1290072911001499&rfr_iscdi=true |