A constrained finite element method satisfying the discrete maximum principle for anisotropic diffusion problems
Nonlinear constrained finite element approximations to anisotropic diffusion problems are considered. Starting with a standard (linear or bilinear) Galerkin discretization, the entries of the stiffness matrix are adjusted so as to enforce sufficient conditions of the discrete maximum principle (DMP)...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2009-05, Vol.228 (9), p.3448-3463 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3463 |
---|---|
container_issue | 9 |
container_start_page | 3448 |
container_title | Journal of computational physics |
container_volume | 228 |
creator | Kuzmin, D. Shashkov, M.J. Svyatskiy, D. |
description | Nonlinear constrained finite element approximations to anisotropic diffusion problems are considered. Starting with a standard (linear or bilinear) Galerkin discretization, the entries of the stiffness matrix are adjusted so as to enforce sufficient conditions of the discrete maximum principle (DMP). An algebraic splitting is employed to separate the contributions of negative and positive off-diagonal coefficients which are associated with diffusive and antidiffusive numerical fluxes, respectively. In order to prevent the formation of spurious undershoots and overshoots, a symmetric slope limiter is designed for the antidiffusive part. The corresponding upper and lower bounds are defined using an estimate of the steepest gradient in terms of the maximum and minimum solution values at surrounding nodes. The recovery of nodal gradients is performed by means of a lumped-mass
L
2
projection. The proposed slope limiting strategy preserves the consistency of the underlying discrete problem and the structure of the stiffness matrix (symmetry, zero row and column sums). A positivity-preserving defect correction scheme is devised for the nonlinear algebraic system to be solved. Numerical results and a grid convergence study are presented for a number of anisotropic diffusion problems in two space dimensions. |
doi_str_mv | 10.1016/j.jcp.2009.01.031 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901706128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999109000552</els_id><sourcerecordid>901706128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-27e20d32ef4322956b6c96067963ad2458b9191bc7ecf5f40c11de3e3dda59f03</originalsourceid><addsrcrecordid>eNp9kTFvFDEQhS0EEsfBD6BzA1S3mbF3vWdRRVGASJFooLZ89pj4tLtebB8i_x6fLqJMNc037828x9h7hA4B1dWxO7q1EwC6A-xA4gu2QdCwEyOql2wDIHCntcbX7E0pRwDYD_1-w9Zr7tJSarZxIc9DXGIlThPNtFQ-U31InhdbYwmPcfnF6wNxH4vL1LDZ_o3zaeZrjouL60Q8pMztEkuqOa3RNTSEU4lpaUw6NNXylr0Kdir07mlu2c8vtz9uvu3uv3-9u7m-37le69rOJgFeCgq9FEIP6qCcVqBGraT1oh_2B40aD24kF4bQg0P0JEl6bwcdQG7Zp4tuM_59olLN3M6mabILpVMxGnAEhWLfyI_PklIq1QKVDcQL6HIqJVMw7fHZ5keDYM4tmKNpLZhzCwbQnJe27MOTuC3OTiHbllT5vyhwwFEI0bjPF45aJn8iZVNcpMWRj5lcNT7FZ1z-ASMWnq8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>33660313</pqid></control><display><type>article</type><title>A constrained finite element method satisfying the discrete maximum principle for anisotropic diffusion problems</title><source>Access via ScienceDirect (Elsevier)</source><creator>Kuzmin, D. ; Shashkov, M.J. ; Svyatskiy, D.</creator><creatorcontrib>Kuzmin, D. ; Shashkov, M.J. ; Svyatskiy, D.</creatorcontrib><description>Nonlinear constrained finite element approximations to anisotropic diffusion problems are considered. Starting with a standard (linear or bilinear) Galerkin discretization, the entries of the stiffness matrix are adjusted so as to enforce sufficient conditions of the discrete maximum principle (DMP). An algebraic splitting is employed to separate the contributions of negative and positive off-diagonal coefficients which are associated with diffusive and antidiffusive numerical fluxes, respectively. In order to prevent the formation of spurious undershoots and overshoots, a symmetric slope limiter is designed for the antidiffusive part. The corresponding upper and lower bounds are defined using an estimate of the steepest gradient in terms of the maximum and minimum solution values at surrounding nodes. The recovery of nodal gradients is performed by means of a lumped-mass
L
2
projection. The proposed slope limiting strategy preserves the consistency of the underlying discrete problem and the structure of the stiffness matrix (symmetry, zero row and column sums). A positivity-preserving defect correction scheme is devised for the nonlinear algebraic system to be solved. Numerical results and a grid convergence study are presented for a number of anisotropic diffusion problems in two space dimensions.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2009.01.031</identifier><identifier>CODEN: JCTPAH</identifier><language>eng</language><publisher>Kidlington: Elsevier Inc</publisher><subject>Algebra ; Anisotropic diffusion ; Anisotropy ; Computational techniques ; Constraints ; Diffusion ; Discrete maximum principle ; Exact sciences and technology ; Finite element method ; Gradient recovery ; Mathematical analysis ; Mathematical methods in physics ; Mathematical models ; Nonlinearity ; Nonnegativity constraints ; Physics ; Slope limiting ; Stiffness matrix</subject><ispartof>Journal of computational physics, 2009-05, Vol.228 (9), p.3448-3463</ispartof><rights>2009 Elsevier Inc.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-27e20d32ef4322956b6c96067963ad2458b9191bc7ecf5f40c11de3e3dda59f03</citedby><cites>FETCH-LOGICAL-c499t-27e20d32ef4322956b6c96067963ad2458b9191bc7ecf5f40c11de3e3dda59f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2009.01.031$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21517222$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kuzmin, D.</creatorcontrib><creatorcontrib>Shashkov, M.J.</creatorcontrib><creatorcontrib>Svyatskiy, D.</creatorcontrib><title>A constrained finite element method satisfying the discrete maximum principle for anisotropic diffusion problems</title><title>Journal of computational physics</title><description>Nonlinear constrained finite element approximations to anisotropic diffusion problems are considered. Starting with a standard (linear or bilinear) Galerkin discretization, the entries of the stiffness matrix are adjusted so as to enforce sufficient conditions of the discrete maximum principle (DMP). An algebraic splitting is employed to separate the contributions of negative and positive off-diagonal coefficients which are associated with diffusive and antidiffusive numerical fluxes, respectively. In order to prevent the formation of spurious undershoots and overshoots, a symmetric slope limiter is designed for the antidiffusive part. The corresponding upper and lower bounds are defined using an estimate of the steepest gradient in terms of the maximum and minimum solution values at surrounding nodes. The recovery of nodal gradients is performed by means of a lumped-mass
L
2
projection. The proposed slope limiting strategy preserves the consistency of the underlying discrete problem and the structure of the stiffness matrix (symmetry, zero row and column sums). A positivity-preserving defect correction scheme is devised for the nonlinear algebraic system to be solved. Numerical results and a grid convergence study are presented for a number of anisotropic diffusion problems in two space dimensions.</description><subject>Algebra</subject><subject>Anisotropic diffusion</subject><subject>Anisotropy</subject><subject>Computational techniques</subject><subject>Constraints</subject><subject>Diffusion</subject><subject>Discrete maximum principle</subject><subject>Exact sciences and technology</subject><subject>Finite element method</subject><subject>Gradient recovery</subject><subject>Mathematical analysis</subject><subject>Mathematical methods in physics</subject><subject>Mathematical models</subject><subject>Nonlinearity</subject><subject>Nonnegativity constraints</subject><subject>Physics</subject><subject>Slope limiting</subject><subject>Stiffness matrix</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kTFvFDEQhS0EEsfBD6BzA1S3mbF3vWdRRVGASJFooLZ89pj4tLtebB8i_x6fLqJMNc037828x9h7hA4B1dWxO7q1EwC6A-xA4gu2QdCwEyOql2wDIHCntcbX7E0pRwDYD_1-w9Zr7tJSarZxIc9DXGIlThPNtFQ-U31InhdbYwmPcfnF6wNxH4vL1LDZ_o3zaeZrjouL60Q8pMztEkuqOa3RNTSEU4lpaUw6NNXylr0Kdir07mlu2c8vtz9uvu3uv3-9u7m-37le69rOJgFeCgq9FEIP6qCcVqBGraT1oh_2B40aD24kF4bQg0P0JEl6bwcdQG7Zp4tuM_59olLN3M6mabILpVMxGnAEhWLfyI_PklIq1QKVDcQL6HIqJVMw7fHZ5keDYM4tmKNpLZhzCwbQnJe27MOTuC3OTiHbllT5vyhwwFEI0bjPF45aJn8iZVNcpMWRj5lcNT7FZ1z-ASMWnq8</recordid><startdate>20090520</startdate><enddate>20090520</enddate><creator>Kuzmin, D.</creator><creator>Shashkov, M.J.</creator><creator>Svyatskiy, D.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090520</creationdate><title>A constrained finite element method satisfying the discrete maximum principle for anisotropic diffusion problems</title><author>Kuzmin, D. ; Shashkov, M.J. ; Svyatskiy, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-27e20d32ef4322956b6c96067963ad2458b9191bc7ecf5f40c11de3e3dda59f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algebra</topic><topic>Anisotropic diffusion</topic><topic>Anisotropy</topic><topic>Computational techniques</topic><topic>Constraints</topic><topic>Diffusion</topic><topic>Discrete maximum principle</topic><topic>Exact sciences and technology</topic><topic>Finite element method</topic><topic>Gradient recovery</topic><topic>Mathematical analysis</topic><topic>Mathematical methods in physics</topic><topic>Mathematical models</topic><topic>Nonlinearity</topic><topic>Nonnegativity constraints</topic><topic>Physics</topic><topic>Slope limiting</topic><topic>Stiffness matrix</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuzmin, D.</creatorcontrib><creatorcontrib>Shashkov, M.J.</creatorcontrib><creatorcontrib>Svyatskiy, D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuzmin, D.</au><au>Shashkov, M.J.</au><au>Svyatskiy, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A constrained finite element method satisfying the discrete maximum principle for anisotropic diffusion problems</atitle><jtitle>Journal of computational physics</jtitle><date>2009-05-20</date><risdate>2009</risdate><volume>228</volume><issue>9</issue><spage>3448</spage><epage>3463</epage><pages>3448-3463</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><coden>JCTPAH</coden><abstract>Nonlinear constrained finite element approximations to anisotropic diffusion problems are considered. Starting with a standard (linear or bilinear) Galerkin discretization, the entries of the stiffness matrix are adjusted so as to enforce sufficient conditions of the discrete maximum principle (DMP). An algebraic splitting is employed to separate the contributions of negative and positive off-diagonal coefficients which are associated with diffusive and antidiffusive numerical fluxes, respectively. In order to prevent the formation of spurious undershoots and overshoots, a symmetric slope limiter is designed for the antidiffusive part. The corresponding upper and lower bounds are defined using an estimate of the steepest gradient in terms of the maximum and minimum solution values at surrounding nodes. The recovery of nodal gradients is performed by means of a lumped-mass
L
2
projection. The proposed slope limiting strategy preserves the consistency of the underlying discrete problem and the structure of the stiffness matrix (symmetry, zero row and column sums). A positivity-preserving defect correction scheme is devised for the nonlinear algebraic system to be solved. Numerical results and a grid convergence study are presented for a number of anisotropic diffusion problems in two space dimensions.</abstract><cop>Kidlington</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2009.01.031</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2009-05, Vol.228 (9), p.3448-3463 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_proquest_miscellaneous_901706128 |
source | Access via ScienceDirect (Elsevier) |
subjects | Algebra Anisotropic diffusion Anisotropy Computational techniques Constraints Diffusion Discrete maximum principle Exact sciences and technology Finite element method Gradient recovery Mathematical analysis Mathematical methods in physics Mathematical models Nonlinearity Nonnegativity constraints Physics Slope limiting Stiffness matrix |
title | A constrained finite element method satisfying the discrete maximum principle for anisotropic diffusion problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T14%3A07%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20constrained%20finite%20element%20method%20satisfying%20the%20discrete%20maximum%20principle%20for%20anisotropic%20diffusion%20problems&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Kuzmin,%20D.&rft.date=2009-05-20&rft.volume=228&rft.issue=9&rft.spage=3448&rft.epage=3463&rft.pages=3448-3463&rft.issn=0021-9991&rft.eissn=1090-2716&rft.coden=JCTPAH&rft_id=info:doi/10.1016/j.jcp.2009.01.031&rft_dat=%3Cproquest_cross%3E901706128%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=33660313&rft_id=info:pmid/&rft_els_id=S0021999109000552&rfr_iscdi=true |