Nonequilibrium potential for arbitrary-connected networks of FitzHugh–Nagumo elements

We study an array of N units with FitzHugh–Nagumo dynamics linearly coupled. The system is submitted to a subthreshold harmonic signal and independent Gaussian white noises with a common intensity η . In the limit of adiabatic driving, we analytically calculate the system’s nonequilibrium potential...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica A 2010-05, Vol.389 (9), p.1931-1944
Hauptverfasser: Sanchez, Alejandro D, Izus, Gonzalo G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1944
container_issue 9
container_start_page 1931
container_title Physica A
container_volume 389
creator Sanchez, Alejandro D
Izus, Gonzalo G
description We study an array of N units with FitzHugh–Nagumo dynamics linearly coupled. The system is submitted to a subthreshold harmonic signal and independent Gaussian white noises with a common intensity η . In the limit of adiabatic driving, we analytically calculate the system’s nonequilibrium potential for arbitrary linear coupling. We illustrate its applicability by investigating noise-induced effects in an excitable regular network with extended antiphase coupling. In particular, the levels of noise for short-wavelength phase-instability, network’s synchronization and depinning of “defects” (groups of contiguous inhibited neurons on an antiphase background) are theoretically predicted and numerically confirmed. The origin of these collective effects and the dependence with parameters of the most probable length of defects are explained in terms of the system’s nonequilibrium potential.
doi_str_mv 10.1016/j.physa.2010.01.013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901705424</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378437110000452</els_id><sourcerecordid>901705424</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-b355198d6ca87c653a0c0b1409d1d5e7f39047fb4a2e5ae72bcd7aa3e9e516dd3</originalsourceid><addsrcrecordid>eNp9kLFOwzAYhC0EEqXwBCzZmFLsOI6TgQFVlCJVZQExWo79p3VJ4tROQGXiHXhDngSXMiOd9Eu_7k66D6FLgicEk-x6M-nWOy8nCQ4fTILoERqRnNM4IaQ4RiNMeR6nlJNTdOb9BmNMOE1G6GVpW9gOpjalM0MTdbaHtjeyjirrIulK0zvpdrGybQuqBx210L9b9-ojW0Uz03_Mh9X6-_NrKVdDYyOooQkF_hydVLL2cPF3x-h5dvc0nceLx_uH6e0iVpSyPi4pY6TIdaZkzlXGqMQKlyTFhSaaAa9ogVNelalMgEngSak0l5JCAYxkWtMxujr0ds5uB_C9aIxXUNeyBTt4UYSdmKVJGpz04FTOeu-gEp0zTdgmCBZ7imIjfimKPUWBSRANqZtDCsKINwNOeGWgVaCNCzyEtubf_A9irX9-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901705424</pqid></control><display><type>article</type><title>Nonequilibrium potential for arbitrary-connected networks of FitzHugh–Nagumo elements</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Sanchez, Alejandro D ; Izus, Gonzalo G</creator><creatorcontrib>Sanchez, Alejandro D ; Izus, Gonzalo G</creatorcontrib><description>We study an array of N units with FitzHugh–Nagumo dynamics linearly coupled. The system is submitted to a subthreshold harmonic signal and independent Gaussian white noises with a common intensity η . In the limit of adiabatic driving, we analytically calculate the system’s nonequilibrium potential for arbitrary linear coupling. We illustrate its applicability by investigating noise-induced effects in an excitable regular network with extended antiphase coupling. In particular, the levels of noise for short-wavelength phase-instability, network’s synchronization and depinning of “defects” (groups of contiguous inhibited neurons on an antiphase background) are theoretically predicted and numerically confirmed. The origin of these collective effects and the dependence with parameters of the most probable length of defects are explained in terms of the system’s nonequilibrium potential.</description><identifier>ISSN: 0378-4371</identifier><identifier>EISSN: 1873-2119</identifier><identifier>DOI: 10.1016/j.physa.2010.01.013</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Adiabatic flow ; Antiphase coupling ; Arrays ; Defects ; Dynamical systems ; Dynamics ; FitzHugh–Nagumo model ; Joining ; Mathematical analysis ; Networks ; Nonequilibrium potential</subject><ispartof>Physica A, 2010-05, Vol.389 (9), p.1931-1944</ispartof><rights>2010 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-b355198d6ca87c653a0c0b1409d1d5e7f39047fb4a2e5ae72bcd7aa3e9e516dd3</citedby><cites>FETCH-LOGICAL-c335t-b355198d6ca87c653a0c0b1409d1d5e7f39047fb4a2e5ae72bcd7aa3e9e516dd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378437110000452$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Sanchez, Alejandro D</creatorcontrib><creatorcontrib>Izus, Gonzalo G</creatorcontrib><title>Nonequilibrium potential for arbitrary-connected networks of FitzHugh–Nagumo elements</title><title>Physica A</title><description>We study an array of N units with FitzHugh–Nagumo dynamics linearly coupled. The system is submitted to a subthreshold harmonic signal and independent Gaussian white noises with a common intensity η . In the limit of adiabatic driving, we analytically calculate the system’s nonequilibrium potential for arbitrary linear coupling. We illustrate its applicability by investigating noise-induced effects in an excitable regular network with extended antiphase coupling. In particular, the levels of noise for short-wavelength phase-instability, network’s synchronization and depinning of “defects” (groups of contiguous inhibited neurons on an antiphase background) are theoretically predicted and numerically confirmed. The origin of these collective effects and the dependence with parameters of the most probable length of defects are explained in terms of the system’s nonequilibrium potential.</description><subject>Adiabatic flow</subject><subject>Antiphase coupling</subject><subject>Arrays</subject><subject>Defects</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>FitzHugh–Nagumo model</subject><subject>Joining</subject><subject>Mathematical analysis</subject><subject>Networks</subject><subject>Nonequilibrium potential</subject><issn>0378-4371</issn><issn>1873-2119</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAYhC0EEqXwBCzZmFLsOI6TgQFVlCJVZQExWo79p3VJ4tROQGXiHXhDngSXMiOd9Eu_7k66D6FLgicEk-x6M-nWOy8nCQ4fTILoERqRnNM4IaQ4RiNMeR6nlJNTdOb9BmNMOE1G6GVpW9gOpjalM0MTdbaHtjeyjirrIulK0zvpdrGybQuqBx210L9b9-ojW0Uz03_Mh9X6-_NrKVdDYyOooQkF_hydVLL2cPF3x-h5dvc0nceLx_uH6e0iVpSyPi4pY6TIdaZkzlXGqMQKlyTFhSaaAa9ogVNelalMgEngSak0l5JCAYxkWtMxujr0ds5uB_C9aIxXUNeyBTt4UYSdmKVJGpz04FTOeu-gEp0zTdgmCBZ7imIjfimKPUWBSRANqZtDCsKINwNOeGWgVaCNCzyEtubf_A9irX9-</recordid><startdate>20100501</startdate><enddate>20100501</enddate><creator>Sanchez, Alejandro D</creator><creator>Izus, Gonzalo G</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20100501</creationdate><title>Nonequilibrium potential for arbitrary-connected networks of FitzHugh–Nagumo elements</title><author>Sanchez, Alejandro D ; Izus, Gonzalo G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-b355198d6ca87c653a0c0b1409d1d5e7f39047fb4a2e5ae72bcd7aa3e9e516dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adiabatic flow</topic><topic>Antiphase coupling</topic><topic>Arrays</topic><topic>Defects</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>FitzHugh–Nagumo model</topic><topic>Joining</topic><topic>Mathematical analysis</topic><topic>Networks</topic><topic>Nonequilibrium potential</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sanchez, Alejandro D</creatorcontrib><creatorcontrib>Izus, Gonzalo G</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sanchez, Alejandro D</au><au>Izus, Gonzalo G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonequilibrium potential for arbitrary-connected networks of FitzHugh–Nagumo elements</atitle><jtitle>Physica A</jtitle><date>2010-05-01</date><risdate>2010</risdate><volume>389</volume><issue>9</issue><spage>1931</spage><epage>1944</epage><pages>1931-1944</pages><issn>0378-4371</issn><eissn>1873-2119</eissn><abstract>We study an array of N units with FitzHugh–Nagumo dynamics linearly coupled. The system is submitted to a subthreshold harmonic signal and independent Gaussian white noises with a common intensity η . In the limit of adiabatic driving, we analytically calculate the system’s nonequilibrium potential for arbitrary linear coupling. We illustrate its applicability by investigating noise-induced effects in an excitable regular network with extended antiphase coupling. In particular, the levels of noise for short-wavelength phase-instability, network’s synchronization and depinning of “defects” (groups of contiguous inhibited neurons on an antiphase background) are theoretically predicted and numerically confirmed. The origin of these collective effects and the dependence with parameters of the most probable length of defects are explained in terms of the system’s nonequilibrium potential.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.physa.2010.01.013</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-4371
ispartof Physica A, 2010-05, Vol.389 (9), p.1931-1944
issn 0378-4371
1873-2119
language eng
recordid cdi_proquest_miscellaneous_901705424
source Elsevier ScienceDirect Journals Complete
subjects Adiabatic flow
Antiphase coupling
Arrays
Defects
Dynamical systems
Dynamics
FitzHugh–Nagumo model
Joining
Mathematical analysis
Networks
Nonequilibrium potential
title Nonequilibrium potential for arbitrary-connected networks of FitzHugh–Nagumo elements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T13%3A05%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonequilibrium%20potential%20for%20arbitrary-connected%20networks%20of%20FitzHugh%E2%80%93Nagumo%20elements&rft.jtitle=Physica%20A&rft.au=Sanchez,%20Alejandro%20D&rft.date=2010-05-01&rft.volume=389&rft.issue=9&rft.spage=1931&rft.epage=1944&rft.pages=1931-1944&rft.issn=0378-4371&rft.eissn=1873-2119&rft_id=info:doi/10.1016/j.physa.2010.01.013&rft_dat=%3Cproquest_cross%3E901705424%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=901705424&rft_id=info:pmid/&rft_els_id=S0378437110000452&rfr_iscdi=true