Nonequilibrium potential for arbitrary-connected networks of FitzHugh–Nagumo elements
We study an array of N units with FitzHugh–Nagumo dynamics linearly coupled. The system is submitted to a subthreshold harmonic signal and independent Gaussian white noises with a common intensity η . In the limit of adiabatic driving, we analytically calculate the system’s nonequilibrium potential...
Gespeichert in:
Veröffentlicht in: | Physica A 2010-05, Vol.389 (9), p.1931-1944 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1944 |
---|---|
container_issue | 9 |
container_start_page | 1931 |
container_title | Physica A |
container_volume | 389 |
creator | Sanchez, Alejandro D Izus, Gonzalo G |
description | We study an array of
N
units with FitzHugh–Nagumo dynamics linearly coupled. The system is submitted to a subthreshold harmonic signal and independent Gaussian white noises with a common intensity
η
. In the limit of adiabatic driving, we analytically calculate the system’s nonequilibrium potential for arbitrary linear coupling. We illustrate its applicability by investigating noise-induced effects in an excitable regular network with extended antiphase coupling. In particular, the levels of noise for short-wavelength phase-instability, network’s synchronization and depinning of “defects” (groups of contiguous inhibited neurons on an antiphase background) are theoretically predicted and numerically confirmed. The origin of these collective effects and the dependence with parameters of the most probable length of defects are explained in terms of the system’s nonequilibrium potential. |
doi_str_mv | 10.1016/j.physa.2010.01.013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901705424</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378437110000452</els_id><sourcerecordid>901705424</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-b355198d6ca87c653a0c0b1409d1d5e7f39047fb4a2e5ae72bcd7aa3e9e516dd3</originalsourceid><addsrcrecordid>eNp9kLFOwzAYhC0EEqXwBCzZmFLsOI6TgQFVlCJVZQExWo79p3VJ4tROQGXiHXhDngSXMiOd9Eu_7k66D6FLgicEk-x6M-nWOy8nCQ4fTILoERqRnNM4IaQ4RiNMeR6nlJNTdOb9BmNMOE1G6GVpW9gOpjalM0MTdbaHtjeyjirrIulK0zvpdrGybQuqBx210L9b9-ojW0Uz03_Mh9X6-_NrKVdDYyOooQkF_hydVLL2cPF3x-h5dvc0nceLx_uH6e0iVpSyPi4pY6TIdaZkzlXGqMQKlyTFhSaaAa9ogVNelalMgEngSak0l5JCAYxkWtMxujr0ds5uB_C9aIxXUNeyBTt4UYSdmKVJGpz04FTOeu-gEp0zTdgmCBZ7imIjfimKPUWBSRANqZtDCsKINwNOeGWgVaCNCzyEtubf_A9irX9-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901705424</pqid></control><display><type>article</type><title>Nonequilibrium potential for arbitrary-connected networks of FitzHugh–Nagumo elements</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Sanchez, Alejandro D ; Izus, Gonzalo G</creator><creatorcontrib>Sanchez, Alejandro D ; Izus, Gonzalo G</creatorcontrib><description>We study an array of
N
units with FitzHugh–Nagumo dynamics linearly coupled. The system is submitted to a subthreshold harmonic signal and independent Gaussian white noises with a common intensity
η
. In the limit of adiabatic driving, we analytically calculate the system’s nonequilibrium potential for arbitrary linear coupling. We illustrate its applicability by investigating noise-induced effects in an excitable regular network with extended antiphase coupling. In particular, the levels of noise for short-wavelength phase-instability, network’s synchronization and depinning of “defects” (groups of contiguous inhibited neurons on an antiphase background) are theoretically predicted and numerically confirmed. The origin of these collective effects and the dependence with parameters of the most probable length of defects are explained in terms of the system’s nonequilibrium potential.</description><identifier>ISSN: 0378-4371</identifier><identifier>EISSN: 1873-2119</identifier><identifier>DOI: 10.1016/j.physa.2010.01.013</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Adiabatic flow ; Antiphase coupling ; Arrays ; Defects ; Dynamical systems ; Dynamics ; FitzHugh–Nagumo model ; Joining ; Mathematical analysis ; Networks ; Nonequilibrium potential</subject><ispartof>Physica A, 2010-05, Vol.389 (9), p.1931-1944</ispartof><rights>2010 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-b355198d6ca87c653a0c0b1409d1d5e7f39047fb4a2e5ae72bcd7aa3e9e516dd3</citedby><cites>FETCH-LOGICAL-c335t-b355198d6ca87c653a0c0b1409d1d5e7f39047fb4a2e5ae72bcd7aa3e9e516dd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378437110000452$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Sanchez, Alejandro D</creatorcontrib><creatorcontrib>Izus, Gonzalo G</creatorcontrib><title>Nonequilibrium potential for arbitrary-connected networks of FitzHugh–Nagumo elements</title><title>Physica A</title><description>We study an array of
N
units with FitzHugh–Nagumo dynamics linearly coupled. The system is submitted to a subthreshold harmonic signal and independent Gaussian white noises with a common intensity
η
. In the limit of adiabatic driving, we analytically calculate the system’s nonequilibrium potential for arbitrary linear coupling. We illustrate its applicability by investigating noise-induced effects in an excitable regular network with extended antiphase coupling. In particular, the levels of noise for short-wavelength phase-instability, network’s synchronization and depinning of “defects” (groups of contiguous inhibited neurons on an antiphase background) are theoretically predicted and numerically confirmed. The origin of these collective effects and the dependence with parameters of the most probable length of defects are explained in terms of the system’s nonequilibrium potential.</description><subject>Adiabatic flow</subject><subject>Antiphase coupling</subject><subject>Arrays</subject><subject>Defects</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>FitzHugh–Nagumo model</subject><subject>Joining</subject><subject>Mathematical analysis</subject><subject>Networks</subject><subject>Nonequilibrium potential</subject><issn>0378-4371</issn><issn>1873-2119</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAYhC0EEqXwBCzZmFLsOI6TgQFVlCJVZQExWo79p3VJ4tROQGXiHXhDngSXMiOd9Eu_7k66D6FLgicEk-x6M-nWOy8nCQ4fTILoERqRnNM4IaQ4RiNMeR6nlJNTdOb9BmNMOE1G6GVpW9gOpjalM0MTdbaHtjeyjirrIulK0zvpdrGybQuqBx210L9b9-ojW0Uz03_Mh9X6-_NrKVdDYyOooQkF_hydVLL2cPF3x-h5dvc0nceLx_uH6e0iVpSyPi4pY6TIdaZkzlXGqMQKlyTFhSaaAa9ogVNelalMgEngSak0l5JCAYxkWtMxujr0ds5uB_C9aIxXUNeyBTt4UYSdmKVJGpz04FTOeu-gEp0zTdgmCBZ7imIjfimKPUWBSRANqZtDCsKINwNOeGWgVaCNCzyEtubf_A9irX9-</recordid><startdate>20100501</startdate><enddate>20100501</enddate><creator>Sanchez, Alejandro D</creator><creator>Izus, Gonzalo G</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20100501</creationdate><title>Nonequilibrium potential for arbitrary-connected networks of FitzHugh–Nagumo elements</title><author>Sanchez, Alejandro D ; Izus, Gonzalo G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-b355198d6ca87c653a0c0b1409d1d5e7f39047fb4a2e5ae72bcd7aa3e9e516dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adiabatic flow</topic><topic>Antiphase coupling</topic><topic>Arrays</topic><topic>Defects</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>FitzHugh–Nagumo model</topic><topic>Joining</topic><topic>Mathematical analysis</topic><topic>Networks</topic><topic>Nonequilibrium potential</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sanchez, Alejandro D</creatorcontrib><creatorcontrib>Izus, Gonzalo G</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sanchez, Alejandro D</au><au>Izus, Gonzalo G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonequilibrium potential for arbitrary-connected networks of FitzHugh–Nagumo elements</atitle><jtitle>Physica A</jtitle><date>2010-05-01</date><risdate>2010</risdate><volume>389</volume><issue>9</issue><spage>1931</spage><epage>1944</epage><pages>1931-1944</pages><issn>0378-4371</issn><eissn>1873-2119</eissn><abstract>We study an array of
N
units with FitzHugh–Nagumo dynamics linearly coupled. The system is submitted to a subthreshold harmonic signal and independent Gaussian white noises with a common intensity
η
. In the limit of adiabatic driving, we analytically calculate the system’s nonequilibrium potential for arbitrary linear coupling. We illustrate its applicability by investigating noise-induced effects in an excitable regular network with extended antiphase coupling. In particular, the levels of noise for short-wavelength phase-instability, network’s synchronization and depinning of “defects” (groups of contiguous inhibited neurons on an antiphase background) are theoretically predicted and numerically confirmed. The origin of these collective effects and the dependence with parameters of the most probable length of defects are explained in terms of the system’s nonequilibrium potential.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.physa.2010.01.013</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-4371 |
ispartof | Physica A, 2010-05, Vol.389 (9), p.1931-1944 |
issn | 0378-4371 1873-2119 |
language | eng |
recordid | cdi_proquest_miscellaneous_901705424 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Adiabatic flow Antiphase coupling Arrays Defects Dynamical systems Dynamics FitzHugh–Nagumo model Joining Mathematical analysis Networks Nonequilibrium potential |
title | Nonequilibrium potential for arbitrary-connected networks of FitzHugh–Nagumo elements |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T13%3A05%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonequilibrium%20potential%20for%20arbitrary-connected%20networks%20of%20FitzHugh%E2%80%93Nagumo%20elements&rft.jtitle=Physica%20A&rft.au=Sanchez,%20Alejandro%20D&rft.date=2010-05-01&rft.volume=389&rft.issue=9&rft.spage=1931&rft.epage=1944&rft.pages=1931-1944&rft.issn=0378-4371&rft.eissn=1873-2119&rft_id=info:doi/10.1016/j.physa.2010.01.013&rft_dat=%3Cproquest_cross%3E901705424%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=901705424&rft_id=info:pmid/&rft_els_id=S0378437110000452&rfr_iscdi=true |