Unitary Toric Classes, the Reality and Desire Diagram, and Sorting by Transpositions

H. Eriksson et al made a breakthrough to the problem of sorting by transpositions by proposing a quotient structure named toric graph, which allowed the reduction of the search space, establishing the transposition diameter ..., for the cases n =13 and n = 15. I. Elias and T. Hartman extended the lo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on discrete mathematics 2010-01, Vol.24 (3), p.792-807
Hauptverfasser: de A. Hausen, Rodrigo, Faria, Luerbio, de Figueiredo, Celina M. H., Kowada, Luis Antonio B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:H. Eriksson et al made a breakthrough to the problem of sorting by transpositions by proposing a quotient structure named toric graph, which allowed the reduction of the search space, establishing the transposition diameter ..., for the cases n =13 and n = 15. I. Elias and T. Hartman extended the lower bound ..., to all odd values of n, ... The value n = 15 is the largest for which ... is known. The goal of the present paper is to further study the toric graph, focusing on the case when n + 1 is prime, providing positive evidence that J. Meidanis, M. E. M. T. Walter, and Z. Dias's conjecture is still valid when n is even. The authors show that, when n+1 is prime, the properties of the reverse permutation are shared by permutations that fall into unitary toric classes. (ProQuest: ... denotes formulae/symbols omitted.)
ISSN:0895-4801
1095-7146
DOI:10.1137/08074413X