Image and Vision Computing

Computers should be able to detect and track the articulated 3D pose of a human being moving through a video sequence. Incremental tracking methods often prove slow and unreliable, and many must be initialized by a human operator before they can track a sequence. This paper describes a simple yet ef...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Image and vision computing 2007-03, Vol.25 (3), p.331-341
1. Verfasser: Howe, Nicholas R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 341
container_issue 3
container_start_page 331
container_title Image and vision computing
container_volume 25
creator Howe, Nicholas R
description Computers should be able to detect and track the articulated 3D pose of a human being moving through a video sequence. Incremental tracking methods often prove slow and unreliable, and many must be initialized by a human operator before they can track a sequence. This paper describes a simple yet effective algorithm for tracking articulated pose, based upon looking up observations (such as body silhouettes) within a collection of known poses. The new algorithm runs quickly, can initialize itself without human intervention, and can automatically recover from critical tracking errors made while tracking previous frames in a video sequence.
doi_str_mv 10.1016/j.imavis.2005.10.006
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_901702178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>901702178</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_9017021783</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOE7KFh_XkAcsjk13kSapHNRdBfXEjSWlCap3tbn18EHcDrwcQA2ArlAoXYt98G-PXGJWHyJI6oJZCiVzI0p1AzmRC0iatRlButzsI1jNt7Z1ZNPkVUp9OPgY7OE6cN25Fa_LmB7PFyqU96_0nN0NNTB0811nY0ujVSXKDRKoc3-__MDh9s0vA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901702178</pqid></control><display><type>article</type><title>Image and Vision Computing</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Howe, Nicholas R</creator><creatorcontrib>Howe, Nicholas R</creatorcontrib><description>Computers should be able to detect and track the articulated 3D pose of a human being moving through a video sequence. Incremental tracking methods often prove slow and unreliable, and many must be initialized by a human operator before they can track a sequence. This paper describes a simple yet effective algorithm for tracking articulated pose, based upon looking up observations (such as body silhouettes) within a collection of known poses. The new algorithm runs quickly, can initialize itself without human intervention, and can automatically recover from critical tracking errors made while tracking previous frames in a video sequence.</description><identifier>ISSN: 0262-8856</identifier><identifier>DOI: 10.1016/j.imavis.2005.10.006</identifier><language>eng</language><subject>Algorithms ; Articulated ; Collection ; Human ; Three dimensional ; Tracking ; Tracking errors</subject><ispartof>Image and vision computing, 2007-03, Vol.25 (3), p.331-341</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Howe, Nicholas R</creatorcontrib><title>Image and Vision Computing</title><title>Image and vision computing</title><description>Computers should be able to detect and track the articulated 3D pose of a human being moving through a video sequence. Incremental tracking methods often prove slow and unreliable, and many must be initialized by a human operator before they can track a sequence. This paper describes a simple yet effective algorithm for tracking articulated pose, based upon looking up observations (such as body silhouettes) within a collection of known poses. The new algorithm runs quickly, can initialize itself without human intervention, and can automatically recover from critical tracking errors made while tracking previous frames in a video sequence.</description><subject>Algorithms</subject><subject>Articulated</subject><subject>Collection</subject><subject>Human</subject><subject>Three dimensional</subject><subject>Tracking</subject><subject>Tracking errors</subject><issn>0262-8856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqNyr0KwjAUQOE7KFh_XkAcsjk13kSapHNRdBfXEjSWlCap3tbn18EHcDrwcQA2ArlAoXYt98G-PXGJWHyJI6oJZCiVzI0p1AzmRC0iatRlButzsI1jNt7Z1ZNPkVUp9OPgY7OE6cN25Fa_LmB7PFyqU96_0nN0NNTB0811nY0ujVSXKDRKoc3-__MDh9s0vA</recordid><startdate>20070301</startdate><enddate>20070301</enddate><creator>Howe, Nicholas R</creator><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20070301</creationdate><title>Image and Vision Computing</title><author>Howe, Nicholas R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_9017021783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>Articulated</topic><topic>Collection</topic><topic>Human</topic><topic>Three dimensional</topic><topic>Tracking</topic><topic>Tracking errors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Howe, Nicholas R</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Image and vision computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Howe, Nicholas R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Image and Vision Computing</atitle><jtitle>Image and vision computing</jtitle><date>2007-03-01</date><risdate>2007</risdate><volume>25</volume><issue>3</issue><spage>331</spage><epage>341</epage><pages>331-341</pages><issn>0262-8856</issn><abstract>Computers should be able to detect and track the articulated 3D pose of a human being moving through a video sequence. Incremental tracking methods often prove slow and unreliable, and many must be initialized by a human operator before they can track a sequence. This paper describes a simple yet effective algorithm for tracking articulated pose, based upon looking up observations (such as body silhouettes) within a collection of known poses. The new algorithm runs quickly, can initialize itself without human intervention, and can automatically recover from critical tracking errors made while tracking previous frames in a video sequence.</abstract><doi>10.1016/j.imavis.2005.10.006</doi></addata></record>
fulltext fulltext
identifier ISSN: 0262-8856
ispartof Image and vision computing, 2007-03, Vol.25 (3), p.331-341
issn 0262-8856
language eng
recordid cdi_proquest_miscellaneous_901702178
source ScienceDirect Journals (5 years ago - present)
subjects Algorithms
Articulated
Collection
Human
Three dimensional
Tracking
Tracking errors
title Image and Vision Computing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T16%3A13%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Image%20and%20Vision%20Computing&rft.jtitle=Image%20and%20vision%20computing&rft.au=Howe,%20Nicholas%20R&rft.date=2007-03-01&rft.volume=25&rft.issue=3&rft.spage=331&rft.epage=341&rft.pages=331-341&rft.issn=0262-8856&rft_id=info:doi/10.1016/j.imavis.2005.10.006&rft_dat=%3Cproquest%3E901702178%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=901702178&rft_id=info:pmid/&rfr_iscdi=true