Modeling merging and breakup in the moving mesh interface tracking method for multiphase flow simulations

The three-dimensional, moving mesh interface tracking (MMIT) method coupled with local mesh adaptations by Quan and Schmidt [S.P. Quan, D.P. Schmidt, A moving mesh interface tracking method for 3D incompressible two-phase flows, J. Comput. Phys. 221 (2007) 761–780] demonstrated the capability to acc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2009-04, Vol.228 (7), p.2660-2675
Hauptverfasser: Quan, Shaoping, Lou, Jing, Schmidt, David P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2675
container_issue 7
container_start_page 2660
container_title Journal of computational physics
container_volume 228
creator Quan, Shaoping
Lou, Jing
Schmidt, David P.
description The three-dimensional, moving mesh interface tracking (MMIT) method coupled with local mesh adaptations by Quan and Schmidt [S.P. Quan, D.P. Schmidt, A moving mesh interface tracking method for 3D incompressible two-phase flows, J. Comput. Phys. 221 (2007) 761–780] demonstrated the capability to accurately simulate multiphase flows, to handle large deformation, and also to perform interface pinch-off for some specific cases. However, another challenge, i.e. how to handle interface merging (such as droplet coalescence) has not been addressed. In this paper, we present a mesh combination scheme for interface connection and a more general mesh separation algorithm for interface breakup. These two schemes are based on the conversion of liquid cells in one phase to another fluid by changing the fluid properties of the cells in the combination or separation region. After the conversion, the newly created interface is usually ragged, and a local projection method is employed to smooth the interface. Extra mesh adaptation criteria are introduced to handle colliding interfaces with almost zero curvatures as the distance between the interfaces diminishes. Simulations of droplet pair collisions including both head-on and off-center coalescences show that the mesh adaptations are capable of resolving very small length scales, and the mesh combination and mesh separation schemes can handle the topological transitions in multiphase flows. The potential of our method to perform detailed investigations of droplet coalescence and breakup is also displayed.
doi_str_mv 10.1016/j.jcp.2008.12.029
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901700609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002199910800675X</els_id><sourcerecordid>33281100</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-78a315a7028c7453464afa0b57cb9e9fc02cfa7cc9509f9c0d64170819ab43743</originalsourceid><addsrcrecordid>eNp90U2LFDEQBuAgCo6rP8BbLn5cuq1Kf6SDJ1nWD1jxoueQqU52MtvdaZPMiv_eDL14nFPBy1MVyMvYa4QaAfsPx_pIay0AhhpFDUI9YTsEBZWQ2D9lOwCBlVIKn7MXKR2hwK4ddsx_D6Od_HLHZxvvztMsI99Ha-5PK_cLzwfL5_CwiXQoUbbRGbI8R0P3W54PYeQuRD6fpuzXg0mWuyn84cmXxGQflvSSPXNmSvbV47xivz7f_Lz-Wt3--PLt-tNtRa1ociUH02BnJIiBZNs1bd8aZ2DfSdorqxyBIGckkepAOUUw9i1KGFCZfdvItrli77a7awy_TzZlPftEdprMYsMpaQWFQw-qyLcXZdOIARGgwPcXIfZSqn6A7nwTN0oxpBSt02v0s4l_NYI-N6WPujSlz01pFLo0VXbePJ43iczkolnIp_-LAoXssBHFfdycLd_34G3UibxdyI4-Wsp6DP7CK_8AQ2So7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1677968059</pqid></control><display><type>article</type><title>Modeling merging and breakup in the moving mesh interface tracking method for multiphase flow simulations</title><source>Elsevier ScienceDirect Journals</source><creator>Quan, Shaoping ; Lou, Jing ; Schmidt, David P.</creator><creatorcontrib>Quan, Shaoping ; Lou, Jing ; Schmidt, David P.</creatorcontrib><description>The three-dimensional, moving mesh interface tracking (MMIT) method coupled with local mesh adaptations by Quan and Schmidt [S.P. Quan, D.P. Schmidt, A moving mesh interface tracking method for 3D incompressible two-phase flows, J. Comput. Phys. 221 (2007) 761–780] demonstrated the capability to accurately simulate multiphase flows, to handle large deformation, and also to perform interface pinch-off for some specific cases. However, another challenge, i.e. how to handle interface merging (such as droplet coalescence) has not been addressed. In this paper, we present a mesh combination scheme for interface connection and a more general mesh separation algorithm for interface breakup. These two schemes are based on the conversion of liquid cells in one phase to another fluid by changing the fluid properties of the cells in the combination or separation region. After the conversion, the newly created interface is usually ragged, and a local projection method is employed to smooth the interface. Extra mesh adaptation criteria are introduced to handle colliding interfaces with almost zero curvatures as the distance between the interfaces diminishes. Simulations of droplet pair collisions including both head-on and off-center coalescences show that the mesh adaptations are capable of resolving very small length scales, and the mesh combination and mesh separation schemes can handle the topological transitions in multiphase flows. The potential of our method to perform detailed investigations of droplet coalescence and breakup is also displayed.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2008.12.029</identifier><identifier>CODEN: JCTPAH</identifier><language>eng</language><publisher>Kidlington: Elsevier Inc</publisher><subject>Breakup ; Coalescence ; Computational techniques ; Computer simulation ; Droplets ; Exact sciences and technology ; Finite element method ; Handles ; Mathematical methods in physics ; Mathematical models ; Mesh adaptation ; Mesh combination ; Mesh separation ; Moving mesh interface tracking ; Multiphase flow ; Multiphase flows ; Physics ; Separation ; Tetrahedral mesh ; Tracking</subject><ispartof>Journal of computational physics, 2009-04, Vol.228 (7), p.2660-2675</ispartof><rights>2008 Elsevier Inc.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-78a315a7028c7453464afa0b57cb9e9fc02cfa7cc9509f9c0d64170819ab43743</citedby><cites>FETCH-LOGICAL-c423t-78a315a7028c7453464afa0b57cb9e9fc02cfa7cc9509f9c0d64170819ab43743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S002199910800675X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21275132$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Quan, Shaoping</creatorcontrib><creatorcontrib>Lou, Jing</creatorcontrib><creatorcontrib>Schmidt, David P.</creatorcontrib><title>Modeling merging and breakup in the moving mesh interface tracking method for multiphase flow simulations</title><title>Journal of computational physics</title><description>The three-dimensional, moving mesh interface tracking (MMIT) method coupled with local mesh adaptations by Quan and Schmidt [S.P. Quan, D.P. Schmidt, A moving mesh interface tracking method for 3D incompressible two-phase flows, J. Comput. Phys. 221 (2007) 761–780] demonstrated the capability to accurately simulate multiphase flows, to handle large deformation, and also to perform interface pinch-off for some specific cases. However, another challenge, i.e. how to handle interface merging (such as droplet coalescence) has not been addressed. In this paper, we present a mesh combination scheme for interface connection and a more general mesh separation algorithm for interface breakup. These two schemes are based on the conversion of liquid cells in one phase to another fluid by changing the fluid properties of the cells in the combination or separation region. After the conversion, the newly created interface is usually ragged, and a local projection method is employed to smooth the interface. Extra mesh adaptation criteria are introduced to handle colliding interfaces with almost zero curvatures as the distance between the interfaces diminishes. Simulations of droplet pair collisions including both head-on and off-center coalescences show that the mesh adaptations are capable of resolving very small length scales, and the mesh combination and mesh separation schemes can handle the topological transitions in multiphase flows. The potential of our method to perform detailed investigations of droplet coalescence and breakup is also displayed.</description><subject>Breakup</subject><subject>Coalescence</subject><subject>Computational techniques</subject><subject>Computer simulation</subject><subject>Droplets</subject><subject>Exact sciences and technology</subject><subject>Finite element method</subject><subject>Handles</subject><subject>Mathematical methods in physics</subject><subject>Mathematical models</subject><subject>Mesh adaptation</subject><subject>Mesh combination</subject><subject>Mesh separation</subject><subject>Moving mesh interface tracking</subject><subject>Multiphase flow</subject><subject>Multiphase flows</subject><subject>Physics</subject><subject>Separation</subject><subject>Tetrahedral mesh</subject><subject>Tracking</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp90U2LFDEQBuAgCo6rP8BbLn5cuq1Kf6SDJ1nWD1jxoueQqU52MtvdaZPMiv_eDL14nFPBy1MVyMvYa4QaAfsPx_pIay0AhhpFDUI9YTsEBZWQ2D9lOwCBlVIKn7MXKR2hwK4ddsx_D6Od_HLHZxvvztMsI99Ha-5PK_cLzwfL5_CwiXQoUbbRGbI8R0P3W54PYeQuRD6fpuzXg0mWuyn84cmXxGQflvSSPXNmSvbV47xivz7f_Lz-Wt3--PLt-tNtRa1ociUH02BnJIiBZNs1bd8aZ2DfSdorqxyBIGckkepAOUUw9i1KGFCZfdvItrli77a7awy_TzZlPftEdprMYsMpaQWFQw-qyLcXZdOIARGgwPcXIfZSqn6A7nwTN0oxpBSt02v0s4l_NYI-N6WPujSlz01pFLo0VXbePJ43iczkolnIp_-LAoXssBHFfdycLd_34G3UibxdyI4-Wsp6DP7CK_8AQ2So7g</recordid><startdate>20090420</startdate><enddate>20090420</enddate><creator>Quan, Shaoping</creator><creator>Lou, Jing</creator><creator>Schmidt, David P.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090420</creationdate><title>Modeling merging and breakup in the moving mesh interface tracking method for multiphase flow simulations</title><author>Quan, Shaoping ; Lou, Jing ; Schmidt, David P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-78a315a7028c7453464afa0b57cb9e9fc02cfa7cc9509f9c0d64170819ab43743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Breakup</topic><topic>Coalescence</topic><topic>Computational techniques</topic><topic>Computer simulation</topic><topic>Droplets</topic><topic>Exact sciences and technology</topic><topic>Finite element method</topic><topic>Handles</topic><topic>Mathematical methods in physics</topic><topic>Mathematical models</topic><topic>Mesh adaptation</topic><topic>Mesh combination</topic><topic>Mesh separation</topic><topic>Moving mesh interface tracking</topic><topic>Multiphase flow</topic><topic>Multiphase flows</topic><topic>Physics</topic><topic>Separation</topic><topic>Tetrahedral mesh</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quan, Shaoping</creatorcontrib><creatorcontrib>Lou, Jing</creatorcontrib><creatorcontrib>Schmidt, David P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quan, Shaoping</au><au>Lou, Jing</au><au>Schmidt, David P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling merging and breakup in the moving mesh interface tracking method for multiphase flow simulations</atitle><jtitle>Journal of computational physics</jtitle><date>2009-04-20</date><risdate>2009</risdate><volume>228</volume><issue>7</issue><spage>2660</spage><epage>2675</epage><pages>2660-2675</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><coden>JCTPAH</coden><abstract>The three-dimensional, moving mesh interface tracking (MMIT) method coupled with local mesh adaptations by Quan and Schmidt [S.P. Quan, D.P. Schmidt, A moving mesh interface tracking method for 3D incompressible two-phase flows, J. Comput. Phys. 221 (2007) 761–780] demonstrated the capability to accurately simulate multiphase flows, to handle large deformation, and also to perform interface pinch-off for some specific cases. However, another challenge, i.e. how to handle interface merging (such as droplet coalescence) has not been addressed. In this paper, we present a mesh combination scheme for interface connection and a more general mesh separation algorithm for interface breakup. These two schemes are based on the conversion of liquid cells in one phase to another fluid by changing the fluid properties of the cells in the combination or separation region. After the conversion, the newly created interface is usually ragged, and a local projection method is employed to smooth the interface. Extra mesh adaptation criteria are introduced to handle colliding interfaces with almost zero curvatures as the distance between the interfaces diminishes. Simulations of droplet pair collisions including both head-on and off-center coalescences show that the mesh adaptations are capable of resolving very small length scales, and the mesh combination and mesh separation schemes can handle the topological transitions in multiphase flows. The potential of our method to perform detailed investigations of droplet coalescence and breakup is also displayed.</abstract><cop>Kidlington</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2008.12.029</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2009-04, Vol.228 (7), p.2660-2675
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_miscellaneous_901700609
source Elsevier ScienceDirect Journals
subjects Breakup
Coalescence
Computational techniques
Computer simulation
Droplets
Exact sciences and technology
Finite element method
Handles
Mathematical methods in physics
Mathematical models
Mesh adaptation
Mesh combination
Mesh separation
Moving mesh interface tracking
Multiphase flow
Multiphase flows
Physics
Separation
Tetrahedral mesh
Tracking
title Modeling merging and breakup in the moving mesh interface tracking method for multiphase flow simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T06%3A16%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20merging%20and%20breakup%20in%20the%20moving%20mesh%20interface%20tracking%20method%20for%20multiphase%20flow%20simulations&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Quan,%20Shaoping&rft.date=2009-04-20&rft.volume=228&rft.issue=7&rft.spage=2660&rft.epage=2675&rft.pages=2660-2675&rft.issn=0021-9991&rft.eissn=1090-2716&rft.coden=JCTPAH&rft_id=info:doi/10.1016/j.jcp.2008.12.029&rft_dat=%3Cproquest_cross%3E33281100%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1677968059&rft_id=info:pmid/&rft_els_id=S002199910800675X&rfr_iscdi=true