Precise temperature measurement at 30 K in the KATRIN source cryostat

The source cryostat of the Karlsruhe Tritium Neutrino Experiment (KATRIN) contains in its centre a 10 m long beam tube of 90 mm inner diameter, operated in a temperature range of 30-550 K and surrounded by superconducting solenoids with a field of 3.6 T. During standard operation at 30 K, the temper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cryogenics (Guildford) 2011-08, Vol.51 (8), p.438-445
Hauptverfasser: GROHMANN, S, BODE, T, SCHÖN, H, SÜSSER, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 445
container_issue 8
container_start_page 438
container_title Cryogenics (Guildford)
container_volume 51
creator GROHMANN, S
BODE, T
SCHÖN, H
SÜSSER, M
description The source cryostat of the Karlsruhe Tritium Neutrino Experiment (KATRIN) contains in its centre a 10 m long beam tube of 90 mm inner diameter, operated in a temperature range of 30-550 K and surrounded by superconducting solenoids with a field of 3.6 T. During standard operation at 30 K, the temperature must be measured continuously with an uncertainty better than 0.03 K. This can be achieved with Pt500 sensors distributed along the beam tube. In order to correct their deviations from a Pt500 characteristic curve, their magnetic field dependence and possible degradation, each Pt500 is in situ calibrated with an adjacent vapour pressure sensor. The in situ calibrations are carried out under various conditions, and will be partly repeated over the lifetime of the system. Starting from a temperature sensor overview, the Pt500 preparation and tests are explained, and the measurement uncertainties are derived. The design of vapour pressure sensors is presented next together with experimental results and the uncertainty estimation for the final installation. This is followed by descriptions of both the Pt500 and the vapour pressure measurement system, and the Pt500 in situ calibration procedure. Finally, an outlook is given to upcoming experiments.
doi_str_mv 10.1016/j.cryogenics.2011.05.001
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_901700539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>901700539</sourcerecordid><originalsourceid>FETCH-LOGICAL-p217t-d8ba1a3b42ec242ca21159ff851fb11cdf038e2e5850e0d6c1e1473001d741013</originalsourceid><addsrcrecordid>eNotkEtPwzAQhC0EEqXwH3xBnBJ2_WiSY1UVqFoBQuUcuc4GUuWF7Rz67zGip1mtRrP7DWMcIUXAxeMxte40fFHfWJ8KQExBpwB4wWaYZ0UihNSXbBY3GOdMX7Mb748AoMRCzNj63ZFtPPFA3UjOhMkR78j4qB31gZvAJfAtb3oevolvl_uPzSv3w-Qs8b_TPphwy65q03q6O-ucfT6t96uXZPf2vFktd8koMAtJlR8MGnlQgqxQwhqBqIu6zjXWB0Rb1SBzEqRzDQTVwiKhymT8vcpUpJVz9vCfO7rhZyIfyq7xltrW9DRMviwAMwAti-i8PzuNt6atnekjZjm6pjPuVAqlYgFayF_0SF3I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901700539</pqid></control><display><type>article</type><title>Precise temperature measurement at 30 K in the KATRIN source cryostat</title><source>Elsevier ScienceDirect Journals Complete</source><creator>GROHMANN, S ; BODE, T ; SCHÖN, H ; SÜSSER, M</creator><creatorcontrib>GROHMANN, S ; BODE, T ; SCHÖN, H ; SÜSSER, M</creatorcontrib><description>The source cryostat of the Karlsruhe Tritium Neutrino Experiment (KATRIN) contains in its centre a 10 m long beam tube of 90 mm inner diameter, operated in a temperature range of 30-550 K and surrounded by superconducting solenoids with a field of 3.6 T. During standard operation at 30 K, the temperature must be measured continuously with an uncertainty better than 0.03 K. This can be achieved with Pt500 sensors distributed along the beam tube. In order to correct their deviations from a Pt500 characteristic curve, their magnetic field dependence and possible degradation, each Pt500 is in situ calibrated with an adjacent vapour pressure sensor. The in situ calibrations are carried out under various conditions, and will be partly repeated over the lifetime of the system. Starting from a temperature sensor overview, the Pt500 preparation and tests are explained, and the measurement uncertainties are derived. The design of vapour pressure sensors is presented next together with experimental results and the uncertainty estimation for the final installation. This is followed by descriptions of both the Pt500 and the vapour pressure measurement system, and the Pt500 in situ calibration procedure. Finally, an outlook is given to upcoming experiments.</description><identifier>ISSN: 0011-2275</identifier><identifier>EISSN: 1879-2235</identifier><identifier>DOI: 10.1016/j.cryogenics.2011.05.001</identifier><identifier>CODEN: CRYOAX</identifier><language>eng</language><publisher>Kidlington: Elsevier</publisher><subject>Applied sciences ; Beams (structural) ; Calibration ; Cryogenics ; Cryostats ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Refrigerating engineering. Cryogenics. Food conservation ; Sensors ; Tubes ; Uncertainty ; Vapor pressure ; Vapour pressure</subject><ispartof>Cryogenics (Guildford), 2011-08, Vol.51 (8), p.438-445</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24404252$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>GROHMANN, S</creatorcontrib><creatorcontrib>BODE, T</creatorcontrib><creatorcontrib>SCHÖN, H</creatorcontrib><creatorcontrib>SÜSSER, M</creatorcontrib><title>Precise temperature measurement at 30 K in the KATRIN source cryostat</title><title>Cryogenics (Guildford)</title><description>The source cryostat of the Karlsruhe Tritium Neutrino Experiment (KATRIN) contains in its centre a 10 m long beam tube of 90 mm inner diameter, operated in a temperature range of 30-550 K and surrounded by superconducting solenoids with a field of 3.6 T. During standard operation at 30 K, the temperature must be measured continuously with an uncertainty better than 0.03 K. This can be achieved with Pt500 sensors distributed along the beam tube. In order to correct their deviations from a Pt500 characteristic curve, their magnetic field dependence and possible degradation, each Pt500 is in situ calibrated with an adjacent vapour pressure sensor. The in situ calibrations are carried out under various conditions, and will be partly repeated over the lifetime of the system. Starting from a temperature sensor overview, the Pt500 preparation and tests are explained, and the measurement uncertainties are derived. The design of vapour pressure sensors is presented next together with experimental results and the uncertainty estimation for the final installation. This is followed by descriptions of both the Pt500 and the vapour pressure measurement system, and the Pt500 in situ calibration procedure. Finally, an outlook is given to upcoming experiments.</description><subject>Applied sciences</subject><subject>Beams (structural)</subject><subject>Calibration</subject><subject>Cryogenics</subject><subject>Cryostats</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Refrigerating engineering. Cryogenics. Food conservation</subject><subject>Sensors</subject><subject>Tubes</subject><subject>Uncertainty</subject><subject>Vapor pressure</subject><subject>Vapour pressure</subject><issn>0011-2275</issn><issn>1879-2235</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNotkEtPwzAQhC0EEqXwH3xBnBJ2_WiSY1UVqFoBQuUcuc4GUuWF7Rz67zGip1mtRrP7DWMcIUXAxeMxte40fFHfWJ8KQExBpwB4wWaYZ0UihNSXbBY3GOdMX7Mb748AoMRCzNj63ZFtPPFA3UjOhMkR78j4qB31gZvAJfAtb3oevolvl_uPzSv3w-Qs8b_TPphwy65q03q6O-ucfT6t96uXZPf2vFktd8koMAtJlR8MGnlQgqxQwhqBqIu6zjXWB0Rb1SBzEqRzDQTVwiKhymT8vcpUpJVz9vCfO7rhZyIfyq7xltrW9DRMviwAMwAti-i8PzuNt6atnekjZjm6pjPuVAqlYgFayF_0SF3I</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>GROHMANN, S</creator><creator>BODE, T</creator><creator>SCHÖN, H</creator><creator>SÜSSER, M</creator><general>Elsevier</general><scope>IQODW</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20110801</creationdate><title>Precise temperature measurement at 30 K in the KATRIN source cryostat</title><author>GROHMANN, S ; BODE, T ; SCHÖN, H ; SÜSSER, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p217t-d8ba1a3b42ec242ca21159ff851fb11cdf038e2e5850e0d6c1e1473001d741013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Beams (structural)</topic><topic>Calibration</topic><topic>Cryogenics</topic><topic>Cryostats</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Refrigerating engineering. Cryogenics. Food conservation</topic><topic>Sensors</topic><topic>Tubes</topic><topic>Uncertainty</topic><topic>Vapor pressure</topic><topic>Vapour pressure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GROHMANN, S</creatorcontrib><creatorcontrib>BODE, T</creatorcontrib><creatorcontrib>SCHÖN, H</creatorcontrib><creatorcontrib>SÜSSER, M</creatorcontrib><collection>Pascal-Francis</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Cryogenics (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GROHMANN, S</au><au>BODE, T</au><au>SCHÖN, H</au><au>SÜSSER, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Precise temperature measurement at 30 K in the KATRIN source cryostat</atitle><jtitle>Cryogenics (Guildford)</jtitle><date>2011-08-01</date><risdate>2011</risdate><volume>51</volume><issue>8</issue><spage>438</spage><epage>445</epage><pages>438-445</pages><issn>0011-2275</issn><eissn>1879-2235</eissn><coden>CRYOAX</coden><abstract>The source cryostat of the Karlsruhe Tritium Neutrino Experiment (KATRIN) contains in its centre a 10 m long beam tube of 90 mm inner diameter, operated in a temperature range of 30-550 K and surrounded by superconducting solenoids with a field of 3.6 T. During standard operation at 30 K, the temperature must be measured continuously with an uncertainty better than 0.03 K. This can be achieved with Pt500 sensors distributed along the beam tube. In order to correct their deviations from a Pt500 characteristic curve, their magnetic field dependence and possible degradation, each Pt500 is in situ calibrated with an adjacent vapour pressure sensor. The in situ calibrations are carried out under various conditions, and will be partly repeated over the lifetime of the system. Starting from a temperature sensor overview, the Pt500 preparation and tests are explained, and the measurement uncertainties are derived. The design of vapour pressure sensors is presented next together with experimental results and the uncertainty estimation for the final installation. This is followed by descriptions of both the Pt500 and the vapour pressure measurement system, and the Pt500 in situ calibration procedure. Finally, an outlook is given to upcoming experiments.</abstract><cop>Kidlington</cop><pub>Elsevier</pub><doi>10.1016/j.cryogenics.2011.05.001</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0011-2275
ispartof Cryogenics (Guildford), 2011-08, Vol.51 (8), p.438-445
issn 0011-2275
1879-2235
language eng
recordid cdi_proquest_miscellaneous_901700539
source Elsevier ScienceDirect Journals Complete
subjects Applied sciences
Beams (structural)
Calibration
Cryogenics
Cryostats
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Refrigerating engineering. Cryogenics. Food conservation
Sensors
Tubes
Uncertainty
Vapor pressure
Vapour pressure
title Precise temperature measurement at 30 K in the KATRIN source cryostat
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T15%3A22%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Precise%20temperature%20measurement%20at%2030%20K%20in%20the%20KATRIN%20source%20cryostat&rft.jtitle=Cryogenics%20(Guildford)&rft.au=GROHMANN,%20S&rft.date=2011-08-01&rft.volume=51&rft.issue=8&rft.spage=438&rft.epage=445&rft.pages=438-445&rft.issn=0011-2275&rft.eissn=1879-2235&rft.coden=CRYOAX&rft_id=info:doi/10.1016/j.cryogenics.2011.05.001&rft_dat=%3Cproquest_pasca%3E901700539%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=901700539&rft_id=info:pmid/&rfr_iscdi=true