Monoclinic zirconia-supported Fe sub(3O) sub(4) for the two-step water-splitting thermochemical cycle at high thermal reduction temperatures of 1400-1600 degree C
Two-step thermochemical water-splitting using monoclinic ZrO sub(2-supported Fe) sub(3)O sub(4 (Fe) sub(3)O sub(4/m-ZrO) sub(2)) for hydrogen production was examined at high thermal reduction temperatures of 1400-1600 degree C. After thermal reduction of Fe sub(3O) sub(4)/m-ZrO sub(2, the reduced sa...
Gespeichert in:
Veröffentlicht in: | International journal of hydrogen energy 2009-02, Vol.34 (3), p.1208-1217 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1217 |
---|---|
container_issue | 3 |
container_start_page | 1208 |
container_title | International journal of hydrogen energy |
container_volume | 34 |
creator | Gokon, Nobuyuki Murayama, Hiroko Umeda, Jun Hatamachi, Tsuyoshi Kodama, Tatsuya |
description | Two-step thermochemical water-splitting using monoclinic ZrO sub(2-supported Fe) sub(3)O sub(4 (Fe) sub(3)O sub(4/m-ZrO) sub(2)) for hydrogen production was examined at high thermal reduction temperatures of 1400-1600 degree C. After thermal reduction of Fe sub(3O) sub(4)/m-ZrO sub(2, the reduced sample was quenched in liquid nitrogen, and was subsequently subjected to the water-decomposition step at 1000 degree C. Quenching of the solid sample was conducted for analysis of the chemical reactions, such as phase transitions, occurring at high-temperature. The hydrogen productivity of Fe) sub(3)O sub(4 on a m-ZrO) sub(2) support and the conversion of Fe sub(3O) sub(4) to FeO were significantly enhanced with higher thermal reduction temperatures. The Fe sub(3O) sub(4)-to-FeO conversion reached 60% when the Fe sub(3O) sub(4)/m-ZrO sub(2 was thermally reduced at 1600 degree C. The phase transition of m-ZrO) sub(2) support to tetragonal ZrO sub(2 (t-ZrO) sub(2)) did not occur during the thermal reduction at 1400-1500 degree C, but it did proceed slightly at 1600 degree C. Fe ions from Fe sub(3O) sub(4) did not enter the ZrO sub(2 lattice during high-temperature thermal reduction. Thus, the Fe) sub(3)O sub(4 loaded on a m-ZrO) sub(2) support can continuously contribute as a Fe sub(3O) sub(4)-FeO redox reactant for thermochemical water-splitting at high-temperatures of 1400-1600 degree C. |
doi_str_mv | 10.1016/j.ijhydene.2008.12.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_901698740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>901698740</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_9016987403</originalsourceid><addsrcrecordid>eNqNkL1OwzAURj2ARPl5BXQ36JBw3URpM1dULIiFvTLOTeLIsY19rao8Dk9K-XkApiN950yfELcSS4myeZhKM43HjhyVK8RNKVcl4vpMLLBqsKhk216Iy5QmRLnGul2Iz2fvvLbGGQ0fJmrvjCpSDsFHpg52BCm_3Vcvyx_WS-h9BB4J-OCLxBTgoJhikYI1zMYN3zLOXo80G60s6KO2BIphNMP4K09rpC5rNt4B0xwoKs6REvgeZI1YyAYROhoiEWyvxXmvbKKbP16Ju93j6_apCNG_Z0q8n03SZK1y5HPat6cj2s26xur_5Rd8JWZI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901698740</pqid></control><display><type>article</type><title>Monoclinic zirconia-supported Fe sub(3O) sub(4) for the two-step water-splitting thermochemical cycle at high thermal reduction temperatures of 1400-1600 degree C</title><source>Access via ScienceDirect (Elsevier)</source><creator>Gokon, Nobuyuki ; Murayama, Hiroko ; Umeda, Jun ; Hatamachi, Tsuyoshi ; Kodama, Tatsuya</creator><creatorcontrib>Gokon, Nobuyuki ; Murayama, Hiroko ; Umeda, Jun ; Hatamachi, Tsuyoshi ; Kodama, Tatsuya</creatorcontrib><description>Two-step thermochemical water-splitting using monoclinic ZrO sub(2-supported Fe) sub(3)O sub(4 (Fe) sub(3)O sub(4/m-ZrO) sub(2)) for hydrogen production was examined at high thermal reduction temperatures of 1400-1600 degree C. After thermal reduction of Fe sub(3O) sub(4)/m-ZrO sub(2, the reduced sample was quenched in liquid nitrogen, and was subsequently subjected to the water-decomposition step at 1000 degree C. Quenching of the solid sample was conducted for analysis of the chemical reactions, such as phase transitions, occurring at high-temperature. The hydrogen productivity of Fe) sub(3)O sub(4 on a m-ZrO) sub(2) support and the conversion of Fe sub(3O) sub(4) to FeO were significantly enhanced with higher thermal reduction temperatures. The Fe sub(3O) sub(4)-to-FeO conversion reached 60% when the Fe sub(3O) sub(4)/m-ZrO sub(2 was thermally reduced at 1600 degree C. The phase transition of m-ZrO) sub(2) support to tetragonal ZrO sub(2 (t-ZrO) sub(2)) did not occur during the thermal reduction at 1400-1500 degree C, but it did proceed slightly at 1600 degree C. Fe ions from Fe sub(3O) sub(4) did not enter the ZrO sub(2 lattice during high-temperature thermal reduction. Thus, the Fe) sub(3)O sub(4 loaded on a m-ZrO) sub(2) support can continuously contribute as a Fe sub(3O) sub(4)-FeO redox reactant for thermochemical water-splitting at high-temperatures of 1400-1600 degree C.</description><identifier>ISSN: 0360-3199</identifier><identifier>DOI: 10.1016/j.ijhydene.2008.12.007</identifier><language>eng</language><subject>Chemical reactions ; Conversion ; Iron ; Liquid nitrogen ; Phase transformations ; Quenching ; Thermal reduction ; Zirconium dioxide</subject><ispartof>International journal of hydrogen energy, 2009-02, Vol.34 (3), p.1208-1217</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gokon, Nobuyuki</creatorcontrib><creatorcontrib>Murayama, Hiroko</creatorcontrib><creatorcontrib>Umeda, Jun</creatorcontrib><creatorcontrib>Hatamachi, Tsuyoshi</creatorcontrib><creatorcontrib>Kodama, Tatsuya</creatorcontrib><title>Monoclinic zirconia-supported Fe sub(3O) sub(4) for the two-step water-splitting thermochemical cycle at high thermal reduction temperatures of 1400-1600 degree C</title><title>International journal of hydrogen energy</title><description>Two-step thermochemical water-splitting using monoclinic ZrO sub(2-supported Fe) sub(3)O sub(4 (Fe) sub(3)O sub(4/m-ZrO) sub(2)) for hydrogen production was examined at high thermal reduction temperatures of 1400-1600 degree C. After thermal reduction of Fe sub(3O) sub(4)/m-ZrO sub(2, the reduced sample was quenched in liquid nitrogen, and was subsequently subjected to the water-decomposition step at 1000 degree C. Quenching of the solid sample was conducted for analysis of the chemical reactions, such as phase transitions, occurring at high-temperature. The hydrogen productivity of Fe) sub(3)O sub(4 on a m-ZrO) sub(2) support and the conversion of Fe sub(3O) sub(4) to FeO were significantly enhanced with higher thermal reduction temperatures. The Fe sub(3O) sub(4)-to-FeO conversion reached 60% when the Fe sub(3O) sub(4)/m-ZrO sub(2 was thermally reduced at 1600 degree C. The phase transition of m-ZrO) sub(2) support to tetragonal ZrO sub(2 (t-ZrO) sub(2)) did not occur during the thermal reduction at 1400-1500 degree C, but it did proceed slightly at 1600 degree C. Fe ions from Fe sub(3O) sub(4) did not enter the ZrO sub(2 lattice during high-temperature thermal reduction. Thus, the Fe) sub(3)O sub(4 loaded on a m-ZrO) sub(2) support can continuously contribute as a Fe sub(3O) sub(4)-FeO redox reactant for thermochemical water-splitting at high-temperatures of 1400-1600 degree C.</description><subject>Chemical reactions</subject><subject>Conversion</subject><subject>Iron</subject><subject>Liquid nitrogen</subject><subject>Phase transformations</subject><subject>Quenching</subject><subject>Thermal reduction</subject><subject>Zirconium dioxide</subject><issn>0360-3199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNkL1OwzAURj2ARPl5BXQ36JBw3URpM1dULIiFvTLOTeLIsY19rao8Dk9K-XkApiN950yfELcSS4myeZhKM43HjhyVK8RNKVcl4vpMLLBqsKhk216Iy5QmRLnGul2Iz2fvvLbGGQ0fJmrvjCpSDsFHpg52BCm_3Vcvyx_WS-h9BB4J-OCLxBTgoJhikYI1zMYN3zLOXo80G60s6KO2BIphNMP4K09rpC5rNt4B0xwoKs6REvgeZI1YyAYROhoiEWyvxXmvbKKbP16Ju93j6_apCNG_Z0q8n03SZK1y5HPat6cj2s26xur_5Rd8JWZI</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Gokon, Nobuyuki</creator><creator>Murayama, Hiroko</creator><creator>Umeda, Jun</creator><creator>Hatamachi, Tsuyoshi</creator><creator>Kodama, Tatsuya</creator><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20090201</creationdate><title>Monoclinic zirconia-supported Fe sub(3O) sub(4) for the two-step water-splitting thermochemical cycle at high thermal reduction temperatures of 1400-1600 degree C</title><author>Gokon, Nobuyuki ; Murayama, Hiroko ; Umeda, Jun ; Hatamachi, Tsuyoshi ; Kodama, Tatsuya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_9016987403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Chemical reactions</topic><topic>Conversion</topic><topic>Iron</topic><topic>Liquid nitrogen</topic><topic>Phase transformations</topic><topic>Quenching</topic><topic>Thermal reduction</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gokon, Nobuyuki</creatorcontrib><creatorcontrib>Murayama, Hiroko</creatorcontrib><creatorcontrib>Umeda, Jun</creatorcontrib><creatorcontrib>Hatamachi, Tsuyoshi</creatorcontrib><creatorcontrib>Kodama, Tatsuya</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of hydrogen energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gokon, Nobuyuki</au><au>Murayama, Hiroko</au><au>Umeda, Jun</au><au>Hatamachi, Tsuyoshi</au><au>Kodama, Tatsuya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monoclinic zirconia-supported Fe sub(3O) sub(4) for the two-step water-splitting thermochemical cycle at high thermal reduction temperatures of 1400-1600 degree C</atitle><jtitle>International journal of hydrogen energy</jtitle><date>2009-02-01</date><risdate>2009</risdate><volume>34</volume><issue>3</issue><spage>1208</spage><epage>1217</epage><pages>1208-1217</pages><issn>0360-3199</issn><abstract>Two-step thermochemical water-splitting using monoclinic ZrO sub(2-supported Fe) sub(3)O sub(4 (Fe) sub(3)O sub(4/m-ZrO) sub(2)) for hydrogen production was examined at high thermal reduction temperatures of 1400-1600 degree C. After thermal reduction of Fe sub(3O) sub(4)/m-ZrO sub(2, the reduced sample was quenched in liquid nitrogen, and was subsequently subjected to the water-decomposition step at 1000 degree C. Quenching of the solid sample was conducted for analysis of the chemical reactions, such as phase transitions, occurring at high-temperature. The hydrogen productivity of Fe) sub(3)O sub(4 on a m-ZrO) sub(2) support and the conversion of Fe sub(3O) sub(4) to FeO were significantly enhanced with higher thermal reduction temperatures. The Fe sub(3O) sub(4)-to-FeO conversion reached 60% when the Fe sub(3O) sub(4)/m-ZrO sub(2 was thermally reduced at 1600 degree C. The phase transition of m-ZrO) sub(2) support to tetragonal ZrO sub(2 (t-ZrO) sub(2)) did not occur during the thermal reduction at 1400-1500 degree C, but it did proceed slightly at 1600 degree C. Fe ions from Fe sub(3O) sub(4) did not enter the ZrO sub(2 lattice during high-temperature thermal reduction. Thus, the Fe) sub(3)O sub(4 loaded on a m-ZrO) sub(2) support can continuously contribute as a Fe sub(3O) sub(4)-FeO redox reactant for thermochemical water-splitting at high-temperatures of 1400-1600 degree C.</abstract><doi>10.1016/j.ijhydene.2008.12.007</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-3199 |
ispartof | International journal of hydrogen energy, 2009-02, Vol.34 (3), p.1208-1217 |
issn | 0360-3199 |
language | eng |
recordid | cdi_proquest_miscellaneous_901698740 |
source | Access via ScienceDirect (Elsevier) |
subjects | Chemical reactions Conversion Iron Liquid nitrogen Phase transformations Quenching Thermal reduction Zirconium dioxide |
title | Monoclinic zirconia-supported Fe sub(3O) sub(4) for the two-step water-splitting thermochemical cycle at high thermal reduction temperatures of 1400-1600 degree C |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A47%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monoclinic%20zirconia-supported%20Fe%20sub(3O)%20sub(4)%20for%20the%20two-step%20water-splitting%20thermochemical%20cycle%20at%20high%20thermal%20reduction%20temperatures%20of%201400-1600%20degree%20C&rft.jtitle=International%20journal%20of%20hydrogen%20energy&rft.au=Gokon,%20Nobuyuki&rft.date=2009-02-01&rft.volume=34&rft.issue=3&rft.spage=1208&rft.epage=1217&rft.pages=1208-1217&rft.issn=0360-3199&rft_id=info:doi/10.1016/j.ijhydene.2008.12.007&rft_dat=%3Cproquest%3E901698740%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=901698740&rft_id=info:pmid/&rfr_iscdi=true |