Cyclostationary modeling of ground reaction force signals
The importance of the measurement of human locomotion for the processes of diagnosis and treatment of locomotion disorders is increasingly being recognized. Human locomotion, in particular walking and running are defined by sequences of cyclic gestures. The variability of these sequences can reveal...
Gespeichert in:
Veröffentlicht in: | Signal processing 2010-04, Vol.90 (4), p.1146-1152 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1152 |
---|---|
container_issue | 4 |
container_start_page | 1146 |
container_title | Signal processing |
container_volume | 90 |
creator | Sabri, Khalid El Badaoui, Mohamed Guillet, François Belli, Alain Millet, Guillaume Benoit Morin, Jean |
description | The importance of the measurement of human locomotion for the processes of diagnosis and treatment of locomotion disorders is increasingly being recognized. Human locomotion, in particular walking and running are defined by sequences of cyclic gestures. The variability of these sequences can reveal abilities or motorskill failures. The purpose of this study is to analyze and to characterize a runner's step from the ground reaction forces (GRF) measured during a run on a treadmill. Traditionally, the analysis of GRF signals is performed by the use of signal processing methods, which assume statistically stationary signal features. The originality of this paper consists in proposing an alternative framework for analyzing GRF signals, based on cyclostationary analysis. This framework, being able to model signals with periodically varying statistics, is better at showing the development of runner's fatigue. |
doi_str_mv | 10.1016/j.sigpro.2009.09.027 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901697054</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165168409004186</els_id><sourcerecordid>901697054</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-4d691b1581f090f247bddc77d460c49bc35e42085a267a1ae454d2cd34e4270a3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKvfwMNexNPWSTbZbC6CFP9BwYueQ5rMlpTtpiZbod_eLFs8CgMDM7-Zx3uE3FJYUKD1w3aR_GYfw4IBqMVYTJ6RGW0kK6UQ8pzMMiZKWjf8klyltAUAWtUwI2p5tF1Igxl86E08FrvgsPP9pghtsYnh0LsiorHjumhDtFhkrd506ZpctLnhzanPydfL8-fyrVx9vL4vn1alrepmKLmrFV1T0dAWFLSMy7VzVkrHa7BcrW0lkDNohGG1NNQgF9wx6yqexxJMNSf3099s8PuAadA7nyx2nekxHJJW2ZqSIHgm-UTaGFKK2Op99LtsSlPQY1B6q6eg9BiUHovJfHZ3EjDJmq6Nprc-_d0yVjVK8SZzjxOH2e2Px6iT9dhbdD6iHbQL_n-hX1xYgC8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901697054</pqid></control><display><type>article</type><title>Cyclostationary modeling of ground reaction force signals</title><source>Access via ScienceDirect (Elsevier)</source><creator>Sabri, Khalid ; El Badaoui, Mohamed ; Guillet, François ; Belli, Alain ; Millet, Guillaume ; Benoit Morin, Jean</creator><creatorcontrib>Sabri, Khalid ; El Badaoui, Mohamed ; Guillet, François ; Belli, Alain ; Millet, Guillaume ; Benoit Morin, Jean</creatorcontrib><description>The importance of the measurement of human locomotion for the processes of diagnosis and treatment of locomotion disorders is increasingly being recognized. Human locomotion, in particular walking and running are defined by sequences of cyclic gestures. The variability of these sequences can reveal abilities or motorskill failures. The purpose of this study is to analyze and to characterize a runner's step from the ground reaction forces (GRF) measured during a run on a treadmill. Traditionally, the analysis of GRF signals is performed by the use of signal processing methods, which assume statistically stationary signal features. The originality of this paper consists in proposing an alternative framework for analyzing GRF signals, based on cyclostationary analysis. This framework, being able to model signals with periodically varying statistics, is better at showing the development of runner's fatigue.</description><identifier>ISSN: 0165-1684</identifier><identifier>EISSN: 1872-7557</identifier><identifier>DOI: 10.1016/j.sigpro.2009.09.027</identifier><identifier>CODEN: SPRODR</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Biological and medical sciences ; Computerized, statistical medical data processing and models in biomedicine ; Cyclostationarity ; Disorders ; Exact sciences and technology ; Ground reaction force signals ; Grounds ; Human ; Information, signal and communications theory ; Locomotion ; Medical management aid. Diagnosis aid ; Medical sciences ; Miscellaneous ; Recognition ; Runner's fatigue ; Running ; Second-order cyclic statistics ; Signal processing ; Statistics ; Telecommunications and information theory</subject><ispartof>Signal processing, 2010-04, Vol.90 (4), p.1146-1152</ispartof><rights>2009 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-4d691b1581f090f247bddc77d460c49bc35e42085a267a1ae454d2cd34e4270a3</citedby><cites>FETCH-LOGICAL-c368t-4d691b1581f090f247bddc77d460c49bc35e42085a267a1ae454d2cd34e4270a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.sigpro.2009.09.027$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22389948$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sabri, Khalid</creatorcontrib><creatorcontrib>El Badaoui, Mohamed</creatorcontrib><creatorcontrib>Guillet, François</creatorcontrib><creatorcontrib>Belli, Alain</creatorcontrib><creatorcontrib>Millet, Guillaume</creatorcontrib><creatorcontrib>Benoit Morin, Jean</creatorcontrib><title>Cyclostationary modeling of ground reaction force signals</title><title>Signal processing</title><description>The importance of the measurement of human locomotion for the processes of diagnosis and treatment of locomotion disorders is increasingly being recognized. Human locomotion, in particular walking and running are defined by sequences of cyclic gestures. The variability of these sequences can reveal abilities or motorskill failures. The purpose of this study is to analyze and to characterize a runner's step from the ground reaction forces (GRF) measured during a run on a treadmill. Traditionally, the analysis of GRF signals is performed by the use of signal processing methods, which assume statistically stationary signal features. The originality of this paper consists in proposing an alternative framework for analyzing GRF signals, based on cyclostationary analysis. This framework, being able to model signals with periodically varying statistics, is better at showing the development of runner's fatigue.</description><subject>Applied sciences</subject><subject>Biological and medical sciences</subject><subject>Computerized, statistical medical data processing and models in biomedicine</subject><subject>Cyclostationarity</subject><subject>Disorders</subject><subject>Exact sciences and technology</subject><subject>Ground reaction force signals</subject><subject>Grounds</subject><subject>Human</subject><subject>Information, signal and communications theory</subject><subject>Locomotion</subject><subject>Medical management aid. Diagnosis aid</subject><subject>Medical sciences</subject><subject>Miscellaneous</subject><subject>Recognition</subject><subject>Runner's fatigue</subject><subject>Running</subject><subject>Second-order cyclic statistics</subject><subject>Signal processing</subject><subject>Statistics</subject><subject>Telecommunications and information theory</subject><issn>0165-1684</issn><issn>1872-7557</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKvfwMNexNPWSTbZbC6CFP9BwYueQ5rMlpTtpiZbod_eLFs8CgMDM7-Zx3uE3FJYUKD1w3aR_GYfw4IBqMVYTJ6RGW0kK6UQ8pzMMiZKWjf8klyltAUAWtUwI2p5tF1Igxl86E08FrvgsPP9pghtsYnh0LsiorHjumhDtFhkrd506ZpctLnhzanPydfL8-fyrVx9vL4vn1alrepmKLmrFV1T0dAWFLSMy7VzVkrHa7BcrW0lkDNohGG1NNQgF9wx6yqexxJMNSf3099s8PuAadA7nyx2nekxHJJW2ZqSIHgm-UTaGFKK2Op99LtsSlPQY1B6q6eg9BiUHovJfHZ3EjDJmq6Nprc-_d0yVjVK8SZzjxOH2e2Px6iT9dhbdD6iHbQL_n-hX1xYgC8</recordid><startdate>20100401</startdate><enddate>20100401</enddate><creator>Sabri, Khalid</creator><creator>El Badaoui, Mohamed</creator><creator>Guillet, François</creator><creator>Belli, Alain</creator><creator>Millet, Guillaume</creator><creator>Benoit Morin, Jean</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100401</creationdate><title>Cyclostationary modeling of ground reaction force signals</title><author>Sabri, Khalid ; El Badaoui, Mohamed ; Guillet, François ; Belli, Alain ; Millet, Guillaume ; Benoit Morin, Jean</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-4d691b1581f090f247bddc77d460c49bc35e42085a267a1ae454d2cd34e4270a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Biological and medical sciences</topic><topic>Computerized, statistical medical data processing and models in biomedicine</topic><topic>Cyclostationarity</topic><topic>Disorders</topic><topic>Exact sciences and technology</topic><topic>Ground reaction force signals</topic><topic>Grounds</topic><topic>Human</topic><topic>Information, signal and communications theory</topic><topic>Locomotion</topic><topic>Medical management aid. Diagnosis aid</topic><topic>Medical sciences</topic><topic>Miscellaneous</topic><topic>Recognition</topic><topic>Runner's fatigue</topic><topic>Running</topic><topic>Second-order cyclic statistics</topic><topic>Signal processing</topic><topic>Statistics</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sabri, Khalid</creatorcontrib><creatorcontrib>El Badaoui, Mohamed</creatorcontrib><creatorcontrib>Guillet, François</creatorcontrib><creatorcontrib>Belli, Alain</creatorcontrib><creatorcontrib>Millet, Guillaume</creatorcontrib><creatorcontrib>Benoit Morin, Jean</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sabri, Khalid</au><au>El Badaoui, Mohamed</au><au>Guillet, François</au><au>Belli, Alain</au><au>Millet, Guillaume</au><au>Benoit Morin, Jean</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cyclostationary modeling of ground reaction force signals</atitle><jtitle>Signal processing</jtitle><date>2010-04-01</date><risdate>2010</risdate><volume>90</volume><issue>4</issue><spage>1146</spage><epage>1152</epage><pages>1146-1152</pages><issn>0165-1684</issn><eissn>1872-7557</eissn><coden>SPRODR</coden><abstract>The importance of the measurement of human locomotion for the processes of diagnosis and treatment of locomotion disorders is increasingly being recognized. Human locomotion, in particular walking and running are defined by sequences of cyclic gestures. The variability of these sequences can reveal abilities or motorskill failures. The purpose of this study is to analyze and to characterize a runner's step from the ground reaction forces (GRF) measured during a run on a treadmill. Traditionally, the analysis of GRF signals is performed by the use of signal processing methods, which assume statistically stationary signal features. The originality of this paper consists in proposing an alternative framework for analyzing GRF signals, based on cyclostationary analysis. This framework, being able to model signals with periodically varying statistics, is better at showing the development of runner's fatigue.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.sigpro.2009.09.027</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0165-1684 |
ispartof | Signal processing, 2010-04, Vol.90 (4), p.1146-1152 |
issn | 0165-1684 1872-7557 |
language | eng |
recordid | cdi_proquest_miscellaneous_901697054 |
source | Access via ScienceDirect (Elsevier) |
subjects | Applied sciences Biological and medical sciences Computerized, statistical medical data processing and models in biomedicine Cyclostationarity Disorders Exact sciences and technology Ground reaction force signals Grounds Human Information, signal and communications theory Locomotion Medical management aid. Diagnosis aid Medical sciences Miscellaneous Recognition Runner's fatigue Running Second-order cyclic statistics Signal processing Statistics Telecommunications and information theory |
title | Cyclostationary modeling of ground reaction force signals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T17%3A57%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cyclostationary%20modeling%20of%20ground%20reaction%20force%20signals&rft.jtitle=Signal%20processing&rft.au=Sabri,%20Khalid&rft.date=2010-04-01&rft.volume=90&rft.issue=4&rft.spage=1146&rft.epage=1152&rft.pages=1146-1152&rft.issn=0165-1684&rft.eissn=1872-7557&rft.coden=SPRODR&rft_id=info:doi/10.1016/j.sigpro.2009.09.027&rft_dat=%3Cproquest_cross%3E901697054%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=901697054&rft_id=info:pmid/&rft_els_id=S0165168409004186&rfr_iscdi=true |