Coordination and Consensus of Networked Agents with Noisy Measurements: Stochastic Algorithms and Asymptotic Behavior
This paper considers the coordination and consensus of networked agents where each agent has noisy measurements of its neighbors' states. For consensus seeking, we propose stochastic approximation-type algorithms with a decreasing step size, and introduce the notions of mean square and strong c...
Gespeichert in:
Veröffentlicht in: | SIAM journal on control and optimization 2009-01, Vol.48 (1), p.134-161 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 161 |
---|---|
container_issue | 1 |
container_start_page | 134 |
container_title | SIAM journal on control and optimization |
container_volume | 48 |
creator | Huang, Minyi Manton, Jonathan H |
description | This paper considers the coordination and consensus of networked agents where each agent has noisy measurements of its neighbors' states. For consensus seeking, we propose stochastic approximation-type algorithms with a decreasing step size, and introduce the notions of mean square and strong consensus. Although the decreasing step size reduces the detrimental effect of the noise, it also reduces the ability of the algorithm to drive the individual states towards each other. The key technique is to ensure a trade-off for the decreasing rate of the step size. By following this strategy, we first develop a stochastic double array analysis in a two-agent model, which leads to both mean square and strong consensus, and extend the analysis to a class of well-studied symmetric models. Subsequently, we consider a general network topology, and introduce stochastic Lyapunov functions together with the so-called direction of invariance to establish mean square consensus. Finally, we apply the stochastic Lyapunov analysis to a leader following scenario. [PUBLICATION ABSTRACT] |
doi_str_mv | 10.1137/06067359X |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901696117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2411594901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-8b3e6df71ab518540dd180a3fa84540a2552f295d6a83370b19b0b6227a819d83</originalsourceid><addsrcrecordid>eNpdkM1OwzAQhC0EEqVw4A0sLohDwBvHjsOtRPxJpRwAiVvkJE6bksTF61D17Ukp4sBptDOfRqsh5BTYJQCPr5hkMuYied8jI2CJCGLgap-MGJc8YBAmh-QIcckYRBFEI9Kn1rqy7rSvbUd1V9LUdmg67JHais6MX1v3YUo6mZvOI13XfkFntsYNfTIae2farX9NX7wtFhp9XdBJM7du4Fr8KZzgpl15u01uzEJ_1dYdk4NKN2hOfnVM3u5uX9OHYPp8_5hOpkERKuUDlXMjyyoGnQtQImJlCYppXmkVDZcOhQirMBGl1IrzmOWQ5CyXYRhrBUmp-Jic73pXzn72Bn3W1liYptGdsT1mCQOZSIB4IM_-kUvbu254LlOKMaliIQboYgcVziI6U2UrV7fabTJg2Xb-7G9-_g2DXXew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>880068755</pqid></control><display><type>article</type><title>Coordination and Consensus of Networked Agents with Noisy Measurements: Stochastic Algorithms and Asymptotic Behavior</title><source>SIAM Journals Online</source><source>Business Source Complete</source><creator>Huang, Minyi ; Manton, Jonathan H</creator><creatorcontrib>Huang, Minyi ; Manton, Jonathan H</creatorcontrib><description>This paper considers the coordination and consensus of networked agents where each agent has noisy measurements of its neighbors' states. For consensus seeking, we propose stochastic approximation-type algorithms with a decreasing step size, and introduce the notions of mean square and strong consensus. Although the decreasing step size reduces the detrimental effect of the noise, it also reduces the ability of the algorithm to drive the individual states towards each other. The key technique is to ensure a trade-off for the decreasing rate of the step size. By following this strategy, we first develop a stochastic double array analysis in a two-agent model, which leads to both mean square and strong consensus, and extend the analysis to a class of well-studied symmetric models. Subsequently, we consider a general network topology, and introduce stochastic Lyapunov functions together with the so-called direction of invariance to establish mean square consensus. Finally, we apply the stochastic Lyapunov analysis to a leader following scenario. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0363-0129</identifier><identifier>EISSN: 1095-7138</identifier><identifier>DOI: 10.1137/06067359X</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Algorithms ; Approximation ; Arrays ; Asymptotic methods ; Asymptotic properties ; Convergence ; Lyapunov functions ; Mean square values ; Network topologies ; Stochastic models ; Stochasticity ; Strategy ; Studies</subject><ispartof>SIAM journal on control and optimization, 2009-01, Vol.48 (1), p.134-161</ispartof><rights>Copyright Society for Industrial and Applied Mathematics 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-8b3e6df71ab518540dd180a3fa84540a2552f295d6a83370b19b0b6227a819d83</citedby><cites>FETCH-LOGICAL-c288t-8b3e6df71ab518540dd180a3fa84540a2552f295d6a83370b19b0b6227a819d83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3171,27901,27902</link.rule.ids></links><search><creatorcontrib>Huang, Minyi</creatorcontrib><creatorcontrib>Manton, Jonathan H</creatorcontrib><title>Coordination and Consensus of Networked Agents with Noisy Measurements: Stochastic Algorithms and Asymptotic Behavior</title><title>SIAM journal on control and optimization</title><description>This paper considers the coordination and consensus of networked agents where each agent has noisy measurements of its neighbors' states. For consensus seeking, we propose stochastic approximation-type algorithms with a decreasing step size, and introduce the notions of mean square and strong consensus. Although the decreasing step size reduces the detrimental effect of the noise, it also reduces the ability of the algorithm to drive the individual states towards each other. The key technique is to ensure a trade-off for the decreasing rate of the step size. By following this strategy, we first develop a stochastic double array analysis in a two-agent model, which leads to both mean square and strong consensus, and extend the analysis to a class of well-studied symmetric models. Subsequently, we consider a general network topology, and introduce stochastic Lyapunov functions together with the so-called direction of invariance to establish mean square consensus. Finally, we apply the stochastic Lyapunov analysis to a leader following scenario. [PUBLICATION ABSTRACT]</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Arrays</subject><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Convergence</subject><subject>Lyapunov functions</subject><subject>Mean square values</subject><subject>Network topologies</subject><subject>Stochastic models</subject><subject>Stochasticity</subject><subject>Strategy</subject><subject>Studies</subject><issn>0363-0129</issn><issn>1095-7138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkM1OwzAQhC0EEqVw4A0sLohDwBvHjsOtRPxJpRwAiVvkJE6bksTF61D17Ukp4sBptDOfRqsh5BTYJQCPr5hkMuYied8jI2CJCGLgap-MGJc8YBAmh-QIcckYRBFEI9Kn1rqy7rSvbUd1V9LUdmg67JHais6MX1v3YUo6mZvOI13XfkFntsYNfTIae2farX9NX7wtFhp9XdBJM7du4Fr8KZzgpl15u01uzEJ_1dYdk4NKN2hOfnVM3u5uX9OHYPp8_5hOpkERKuUDlXMjyyoGnQtQImJlCYppXmkVDZcOhQirMBGl1IrzmOWQ5CyXYRhrBUmp-Jic73pXzn72Bn3W1liYptGdsT1mCQOZSIB4IM_-kUvbu254LlOKMaliIQboYgcVziI6U2UrV7fabTJg2Xb-7G9-_g2DXXew</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Huang, Minyi</creator><creator>Manton, Jonathan H</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090101</creationdate><title>Coordination and Consensus of Networked Agents with Noisy Measurements: Stochastic Algorithms and Asymptotic Behavior</title><author>Huang, Minyi ; Manton, Jonathan H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-8b3e6df71ab518540dd180a3fa84540a2552f295d6a83370b19b0b6227a819d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Arrays</topic><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Convergence</topic><topic>Lyapunov functions</topic><topic>Mean square values</topic><topic>Network topologies</topic><topic>Stochastic models</topic><topic>Stochasticity</topic><topic>Strategy</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Minyi</creatorcontrib><creatorcontrib>Manton, Jonathan H</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SIAM journal on control and optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Minyi</au><au>Manton, Jonathan H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coordination and Consensus of Networked Agents with Noisy Measurements: Stochastic Algorithms and Asymptotic Behavior</atitle><jtitle>SIAM journal on control and optimization</jtitle><date>2009-01-01</date><risdate>2009</risdate><volume>48</volume><issue>1</issue><spage>134</spage><epage>161</epage><pages>134-161</pages><issn>0363-0129</issn><eissn>1095-7138</eissn><abstract>This paper considers the coordination and consensus of networked agents where each agent has noisy measurements of its neighbors' states. For consensus seeking, we propose stochastic approximation-type algorithms with a decreasing step size, and introduce the notions of mean square and strong consensus. Although the decreasing step size reduces the detrimental effect of the noise, it also reduces the ability of the algorithm to drive the individual states towards each other. The key technique is to ensure a trade-off for the decreasing rate of the step size. By following this strategy, we first develop a stochastic double array analysis in a two-agent model, which leads to both mean square and strong consensus, and extend the analysis to a class of well-studied symmetric models. Subsequently, we consider a general network topology, and introduce stochastic Lyapunov functions together with the so-called direction of invariance to establish mean square consensus. Finally, we apply the stochastic Lyapunov analysis to a leader following scenario. [PUBLICATION ABSTRACT]</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/06067359X</doi><tpages>28</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0363-0129 |
ispartof | SIAM journal on control and optimization, 2009-01, Vol.48 (1), p.134-161 |
issn | 0363-0129 1095-7138 |
language | eng |
recordid | cdi_proquest_miscellaneous_901696117 |
source | SIAM Journals Online; Business Source Complete |
subjects | Algorithms Approximation Arrays Asymptotic methods Asymptotic properties Convergence Lyapunov functions Mean square values Network topologies Stochastic models Stochasticity Strategy Studies |
title | Coordination and Consensus of Networked Agents with Noisy Measurements: Stochastic Algorithms and Asymptotic Behavior |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A21%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coordination%20and%20Consensus%20of%20Networked%20Agents%20with%20Noisy%20Measurements:%20Stochastic%20Algorithms%20and%20Asymptotic%20Behavior&rft.jtitle=SIAM%20journal%20on%20control%20and%20optimization&rft.au=Huang,%20Minyi&rft.date=2009-01-01&rft.volume=48&rft.issue=1&rft.spage=134&rft.epage=161&rft.pages=134-161&rft.issn=0363-0129&rft.eissn=1095-7138&rft_id=info:doi/10.1137/06067359X&rft_dat=%3Cproquest_cross%3E2411594901%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=880068755&rft_id=info:pmid/&rfr_iscdi=true |