A New Proof of the Absolute Convergence of the Spitzer Series
A new proof of the absolute convergence of the Spitzer series is given which is based on the Berry-Esseen bound. Moreover, the upper bound is deduced for the sum of the series generated by the absolute values of the terms of the Spitzer series. [PUBLICATION ABSTRACT]
Gespeichert in:
Veröffentlicht in: | Theory of probability and its applications 2010-01, Vol.54 (1), p.151-154 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 154 |
---|---|
container_issue | 1 |
container_start_page | 151 |
container_title | Theory of probability and its applications |
container_volume | 54 |
creator | Nagaev, S V |
description | A new proof of the absolute convergence of the Spitzer series is given which is based on the Berry-Esseen bound. Moreover, the upper bound is deduced for the sum of the series generated by the absolute values of the terms of the Spitzer series. [PUBLICATION ABSTRACT] |
doi_str_mv | 10.1137/S0040585X97984024 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901695107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>901695107</sourcerecordid><originalsourceid>FETCH-LOGICAL-c304t-b6a17e1b7bae521b9249186adc2f9e539e604817ea74de12e44cfc02a80e8a583</originalsourceid><addsrcrecordid>eNplkE1LxDAURYMoOI7-AHfFjavqe2nSJAsXw-AXDCqMgruSZl61Q6cZk1bRX2-H0Y3Chbc4h8flMnaMcIaYqfM5gACp5bNRRgvgYoeNEIxMFUezy0YbnG74PjuIcQkAOUc5YheT5I4-kofgfZUM6V4pmZTRN31HydS37xReqHX0y-bruvuikMwp1BQP2V5lm0hHP3fMnq4uH6c36ez--nY6maUuA9GlZW5REZaqtCQ5loYLgzq3C8crQzIzlIPQg2KVWBByEsJVDrjVQNpKnY3Z6fbvOvi3nmJXrOroqGlsS76PhQHMjURQg3nyx1z6PrRDuUJrAAWgYZBwK7ngYwxUFetQr2z4LBCKzZzFvzmzb_IAZco</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>880070080</pqid></control><display><type>article</type><title>A New Proof of the Absolute Convergence of the Spitzer Series</title><source>LOCUS - SIAM's Online Journal Archive</source><creator>Nagaev, S V</creator><creatorcontrib>Nagaev, S V</creatorcontrib><description>A new proof of the absolute convergence of the Spitzer series is given which is based on the Berry-Esseen bound. Moreover, the upper bound is deduced for the sum of the series generated by the absolute values of the terms of the Spitzer series. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0040-585X</identifier><identifier>EISSN: 1095-7219</identifier><identifier>DOI: 10.1137/S0040585X97984024</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Convergence ; Mathematical functions ; Probability distribution ; Proof theory ; Proving ; Studies ; Upper bounds</subject><ispartof>Theory of probability and its applications, 2010-01, Vol.54 (1), p.151-154</ispartof><rights>Copyright Society for Industrial and Applied Mathematics 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c304t-b6a17e1b7bae521b9249186adc2f9e539e604817ea74de12e44cfc02a80e8a583</citedby><cites>FETCH-LOGICAL-c304t-b6a17e1b7bae521b9249186adc2f9e539e604817ea74de12e44cfc02a80e8a583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3183,27923,27924</link.rule.ids></links><search><creatorcontrib>Nagaev, S V</creatorcontrib><title>A New Proof of the Absolute Convergence of the Spitzer Series</title><title>Theory of probability and its applications</title><description>A new proof of the absolute convergence of the Spitzer series is given which is based on the Berry-Esseen bound. Moreover, the upper bound is deduced for the sum of the series generated by the absolute values of the terms of the Spitzer series. [PUBLICATION ABSTRACT]</description><subject>Convergence</subject><subject>Mathematical functions</subject><subject>Probability distribution</subject><subject>Proof theory</subject><subject>Proving</subject><subject>Studies</subject><subject>Upper bounds</subject><issn>0040-585X</issn><issn>1095-7219</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNplkE1LxDAURYMoOI7-AHfFjavqe2nSJAsXw-AXDCqMgruSZl61Q6cZk1bRX2-H0Y3Chbc4h8flMnaMcIaYqfM5gACp5bNRRgvgYoeNEIxMFUezy0YbnG74PjuIcQkAOUc5YheT5I4-kofgfZUM6V4pmZTRN31HydS37xReqHX0y-bruvuikMwp1BQP2V5lm0hHP3fMnq4uH6c36ez--nY6maUuA9GlZW5REZaqtCQ5loYLgzq3C8crQzIzlIPQg2KVWBByEsJVDrjVQNpKnY3Z6fbvOvi3nmJXrOroqGlsS76PhQHMjURQg3nyx1z6PrRDuUJrAAWgYZBwK7ngYwxUFetQr2z4LBCKzZzFvzmzb_IAZco</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Nagaev, S V</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100101</creationdate><title>A New Proof of the Absolute Convergence of the Spitzer Series</title><author>Nagaev, S V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c304t-b6a17e1b7bae521b9249186adc2f9e539e604817ea74de12e44cfc02a80e8a583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Convergence</topic><topic>Mathematical functions</topic><topic>Probability distribution</topic><topic>Proof theory</topic><topic>Proving</topic><topic>Studies</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nagaev, S V</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Theory of probability and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nagaev, S V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Proof of the Absolute Convergence of the Spitzer Series</atitle><jtitle>Theory of probability and its applications</jtitle><date>2010-01-01</date><risdate>2010</risdate><volume>54</volume><issue>1</issue><spage>151</spage><epage>154</epage><pages>151-154</pages><issn>0040-585X</issn><eissn>1095-7219</eissn><abstract>A new proof of the absolute convergence of the Spitzer series is given which is based on the Berry-Esseen bound. Moreover, the upper bound is deduced for the sum of the series generated by the absolute values of the terms of the Spitzer series. [PUBLICATION ABSTRACT]</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S0040585X97984024</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-585X |
ispartof | Theory of probability and its applications, 2010-01, Vol.54 (1), p.151-154 |
issn | 0040-585X 1095-7219 |
language | eng |
recordid | cdi_proquest_miscellaneous_901695107 |
source | LOCUS - SIAM's Online Journal Archive |
subjects | Convergence Mathematical functions Probability distribution Proof theory Proving Studies Upper bounds |
title | A New Proof of the Absolute Convergence of the Spitzer Series |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T02%3A21%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Proof%20of%20the%20Absolute%20Convergence%20of%20the%20Spitzer%20Series&rft.jtitle=Theory%20of%20probability%20and%20its%20applications&rft.au=Nagaev,%20S%20V&rft.date=2010-01-01&rft.volume=54&rft.issue=1&rft.spage=151&rft.epage=154&rft.pages=151-154&rft.issn=0040-585X&rft.eissn=1095-7219&rft_id=info:doi/10.1137/S0040585X97984024&rft_dat=%3Cproquest_cross%3E901695107%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=880070080&rft_id=info:pmid/&rfr_iscdi=true |