MIXED HP-FINITE ELEMENT METHOD FOR LINEAR ELASTICITY WITH WEAKLY IMPOSED SYMMETRY: STABILITY ANALYSIS

The paper presents a generalization of Arnold—Falk—Winther elements for linear elasticity to meshes with elements of variable order. The generalization is straightforward but the stability analysis involves a nontrivial modification of involved interpolation operators. The analysis addresses only th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on numerical analysis 2011-01, Vol.49 (1/2), p.619-641
Hauptverfasser: QIU, WEIFENG, DEMKOWICZ, LESZEK
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 641
container_issue 1/2
container_start_page 619
container_title SIAM journal on numerical analysis
container_volume 49
creator QIU, WEIFENG
DEMKOWICZ, LESZEK
description The paper presents a generalization of Arnold—Falk—Winther elements for linear elasticity to meshes with elements of variable order. The generalization is straightforward but the stability analysis involves a nontrivial modification of involved interpolation operators. The analysis addresses only the h-convergence. In addition, numerical experiments for two dimensional cases are provided.
doi_str_mv 10.1137/100797539
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_901694512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23074414</jstor_id><sourcerecordid>23074414</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-64c7b84663a06835252eeef2d4f341945dcc5148cc2e8a8c221e616d5614d3623</originalsourceid><addsrcrecordid>eNpdkF1L40AUhgdZwa564Q8QBkFkL6Jz5isT72KdbgeTVpqIm6uQnU6gpW00017sv98pFQWvDofzvA-HF6ELILcALL4DQuIkFiw5QgMgiYhiiMkPNCCEyQg4TU7QT--XJOwK2AC53PzRj3j8HI3MxJQa60znelLiXJfj6SMeTWc4MxOdzsIlLUozNGWFX005xq86fcoqbPLnaREURZWHzKy6x0WZPphsz6WTNKsKU5yh47ZZeXf-MU_Ry0iXw3GUTX-bYZpFlsViG0lu47-KS8kaIhUTVFDnXEvnvGUcEi7m1grgylrqVKMspeAkyLmQwOdMUnaKbg7et7573zm_rdcLb91q1Wxct_N1QkAGDezJq2_kstv1m_BcrRQhMqHAAvTrANm-8753bf3WL9ZN_68GUu_rrj_rDuz1h7Dxtlm1fbOxC_8ZoJwpJRQJ3OWBW_pt13_dGYk5B87-A5V-fUM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>880069213</pqid></control><display><type>article</type><title>MIXED HP-FINITE ELEMENT METHOD FOR LINEAR ELASTICITY WITH WEAKLY IMPOSED SYMMETRY: STABILITY ANALYSIS</title><source>SIAM Journals Online</source><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>QIU, WEIFENG ; DEMKOWICZ, LESZEK</creator><creatorcontrib>QIU, WEIFENG ; DEMKOWICZ, LESZEK</creatorcontrib><description>The paper presents a generalization of Arnold—Falk—Winther elements for linear elasticity to meshes with elements of variable order. The generalization is straightforward but the stability analysis involves a nontrivial modification of involved interpolation operators. The analysis addresses only the h-convergence. In addition, numerical experiments for two dimensional cases are provided.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/100797539</identifier><identifier>CODEN: SJNAEQ</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Algebra ; Approximation ; Approximations and expansions ; Convergence ; Elasticity ; Exact sciences and technology ; Finite element analysis ; Finite element method ; Interpolation ; Linear transformations ; Mathematical analysis ; Mathematical models ; Mathematical vectors ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical approximation ; Operators ; Polynomials ; Sciences and techniques of general use ; Stability analysis ; Studies ; Symmetry ; Tetrahedrons</subject><ispartof>SIAM journal on numerical analysis, 2011-01, Vol.49 (1/2), p.619-641</ispartof><rights>Copyright ©2011 Society for Industrial and Applied Mathematics</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Society for Industrial and Applied Mathematics 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-64c7b84663a06835252eeef2d4f341945dcc5148cc2e8a8c221e616d5614d3623</citedby><cites>FETCH-LOGICAL-c375t-64c7b84663a06835252eeef2d4f341945dcc5148cc2e8a8c221e616d5614d3623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23074414$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23074414$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,3184,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24388580$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>QIU, WEIFENG</creatorcontrib><creatorcontrib>DEMKOWICZ, LESZEK</creatorcontrib><title>MIXED HP-FINITE ELEMENT METHOD FOR LINEAR ELASTICITY WITH WEAKLY IMPOSED SYMMETRY: STABILITY ANALYSIS</title><title>SIAM journal on numerical analysis</title><description>The paper presents a generalization of Arnold—Falk—Winther elements for linear elasticity to meshes with elements of variable order. The generalization is straightforward but the stability analysis involves a nontrivial modification of involved interpolation operators. The analysis addresses only the h-convergence. In addition, numerical experiments for two dimensional cases are provided.</description><subject>Algebra</subject><subject>Approximation</subject><subject>Approximations and expansions</subject><subject>Convergence</subject><subject>Elasticity</subject><subject>Exact sciences and technology</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Interpolation</subject><subject>Linear transformations</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematical vectors</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical approximation</subject><subject>Operators</subject><subject>Polynomials</subject><subject>Sciences and techniques of general use</subject><subject>Stability analysis</subject><subject>Studies</subject><subject>Symmetry</subject><subject>Tetrahedrons</subject><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkF1L40AUhgdZwa564Q8QBkFkL6Jz5isT72KdbgeTVpqIm6uQnU6gpW00017sv98pFQWvDofzvA-HF6ELILcALL4DQuIkFiw5QgMgiYhiiMkPNCCEyQg4TU7QT--XJOwK2AC53PzRj3j8HI3MxJQa60znelLiXJfj6SMeTWc4MxOdzsIlLUozNGWFX005xq86fcoqbPLnaREURZWHzKy6x0WZPphsz6WTNKsKU5yh47ZZeXf-MU_Ry0iXw3GUTX-bYZpFlsViG0lu47-KS8kaIhUTVFDnXEvnvGUcEi7m1grgylrqVKMspeAkyLmQwOdMUnaKbg7et7573zm_rdcLb91q1Wxct_N1QkAGDezJq2_kstv1m_BcrRQhMqHAAvTrANm-8753bf3WL9ZN_68GUu_rrj_rDuz1h7Dxtlm1fbOxC_8ZoJwpJRQJ3OWBW_pt13_dGYk5B87-A5V-fUM</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>QIU, WEIFENG</creator><creator>DEMKOWICZ, LESZEK</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110101</creationdate><title>MIXED HP-FINITE ELEMENT METHOD FOR LINEAR ELASTICITY WITH WEAKLY IMPOSED SYMMETRY: STABILITY ANALYSIS</title><author>QIU, WEIFENG ; DEMKOWICZ, LESZEK</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-64c7b84663a06835252eeef2d4f341945dcc5148cc2e8a8c221e616d5614d3623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algebra</topic><topic>Approximation</topic><topic>Approximations and expansions</topic><topic>Convergence</topic><topic>Elasticity</topic><topic>Exact sciences and technology</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Interpolation</topic><topic>Linear transformations</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematical vectors</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical approximation</topic><topic>Operators</topic><topic>Polynomials</topic><topic>Sciences and techniques of general use</topic><topic>Stability analysis</topic><topic>Studies</topic><topic>Symmetry</topic><topic>Tetrahedrons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>QIU, WEIFENG</creatorcontrib><creatorcontrib>DEMKOWICZ, LESZEK</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>QIU, WEIFENG</au><au>DEMKOWICZ, LESZEK</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MIXED HP-FINITE ELEMENT METHOD FOR LINEAR ELASTICITY WITH WEAKLY IMPOSED SYMMETRY: STABILITY ANALYSIS</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>2011-01-01</date><risdate>2011</risdate><volume>49</volume><issue>1/2</issue><spage>619</spage><epage>641</epage><pages>619-641</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><coden>SJNAEQ</coden><abstract>The paper presents a generalization of Arnold—Falk—Winther elements for linear elasticity to meshes with elements of variable order. The generalization is straightforward but the stability analysis involves a nontrivial modification of involved interpolation operators. The analysis addresses only the h-convergence. In addition, numerical experiments for two dimensional cases are provided.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/100797539</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-1429
ispartof SIAM journal on numerical analysis, 2011-01, Vol.49 (1/2), p.619-641
issn 0036-1429
1095-7170
language eng
recordid cdi_proquest_miscellaneous_901694512
source SIAM Journals Online; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing
subjects Algebra
Approximation
Approximations and expansions
Convergence
Elasticity
Exact sciences and technology
Finite element analysis
Finite element method
Interpolation
Linear transformations
Mathematical analysis
Mathematical models
Mathematical vectors
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
Numerical approximation
Operators
Polynomials
Sciences and techniques of general use
Stability analysis
Studies
Symmetry
Tetrahedrons
title MIXED HP-FINITE ELEMENT METHOD FOR LINEAR ELASTICITY WITH WEAKLY IMPOSED SYMMETRY: STABILITY ANALYSIS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T10%3A02%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MIXED%20HP-FINITE%20ELEMENT%20METHOD%20FOR%20LINEAR%20ELASTICITY%20WITH%20WEAKLY%20IMPOSED%20SYMMETRY:%20STABILITY%20ANALYSIS&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=QIU,%20WEIFENG&rft.date=2011-01-01&rft.volume=49&rft.issue=1/2&rft.spage=619&rft.epage=641&rft.pages=619-641&rft.issn=0036-1429&rft.eissn=1095-7170&rft.coden=SJNAEQ&rft_id=info:doi/10.1137/100797539&rft_dat=%3Cjstor_proqu%3E23074414%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=880069213&rft_id=info:pmid/&rft_jstor_id=23074414&rfr_iscdi=true