MIXED HP-FINITE ELEMENT METHOD FOR LINEAR ELASTICITY WITH WEAKLY IMPOSED SYMMETRY: STABILITY ANALYSIS
The paper presents a generalization of Arnold—Falk—Winther elements for linear elasticity to meshes with elements of variable order. The generalization is straightforward but the stability analysis involves a nontrivial modification of involved interpolation operators. The analysis addresses only th...
Gespeichert in:
Veröffentlicht in: | SIAM journal on numerical analysis 2011-01, Vol.49 (1/2), p.619-641 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 641 |
---|---|
container_issue | 1/2 |
container_start_page | 619 |
container_title | SIAM journal on numerical analysis |
container_volume | 49 |
creator | QIU, WEIFENG DEMKOWICZ, LESZEK |
description | The paper presents a generalization of Arnold—Falk—Winther elements for linear elasticity to meshes with elements of variable order. The generalization is straightforward but the stability analysis involves a nontrivial modification of involved interpolation operators. The analysis addresses only the h-convergence. In addition, numerical experiments for two dimensional cases are provided. |
doi_str_mv | 10.1137/100797539 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_901694512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23074414</jstor_id><sourcerecordid>23074414</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-64c7b84663a06835252eeef2d4f341945dcc5148cc2e8a8c221e616d5614d3623</originalsourceid><addsrcrecordid>eNpdkF1L40AUhgdZwa564Q8QBkFkL6Jz5isT72KdbgeTVpqIm6uQnU6gpW00017sv98pFQWvDofzvA-HF6ELILcALL4DQuIkFiw5QgMgiYhiiMkPNCCEyQg4TU7QT--XJOwK2AC53PzRj3j8HI3MxJQa60znelLiXJfj6SMeTWc4MxOdzsIlLUozNGWFX005xq86fcoqbPLnaREURZWHzKy6x0WZPphsz6WTNKsKU5yh47ZZeXf-MU_Ry0iXw3GUTX-bYZpFlsViG0lu47-KS8kaIhUTVFDnXEvnvGUcEi7m1grgylrqVKMspeAkyLmQwOdMUnaKbg7et7573zm_rdcLb91q1Wxct_N1QkAGDezJq2_kstv1m_BcrRQhMqHAAvTrANm-8753bf3WL9ZN_68GUu_rrj_rDuz1h7Dxtlm1fbOxC_8ZoJwpJRQJ3OWBW_pt13_dGYk5B87-A5V-fUM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>880069213</pqid></control><display><type>article</type><title>MIXED HP-FINITE ELEMENT METHOD FOR LINEAR ELASTICITY WITH WEAKLY IMPOSED SYMMETRY: STABILITY ANALYSIS</title><source>SIAM Journals Online</source><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>QIU, WEIFENG ; DEMKOWICZ, LESZEK</creator><creatorcontrib>QIU, WEIFENG ; DEMKOWICZ, LESZEK</creatorcontrib><description>The paper presents a generalization of Arnold—Falk—Winther elements for linear elasticity to meshes with elements of variable order. The generalization is straightforward but the stability analysis involves a nontrivial modification of involved interpolation operators. The analysis addresses only the h-convergence. In addition, numerical experiments for two dimensional cases are provided.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/100797539</identifier><identifier>CODEN: SJNAEQ</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Algebra ; Approximation ; Approximations and expansions ; Convergence ; Elasticity ; Exact sciences and technology ; Finite element analysis ; Finite element method ; Interpolation ; Linear transformations ; Mathematical analysis ; Mathematical models ; Mathematical vectors ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical approximation ; Operators ; Polynomials ; Sciences and techniques of general use ; Stability analysis ; Studies ; Symmetry ; Tetrahedrons</subject><ispartof>SIAM journal on numerical analysis, 2011-01, Vol.49 (1/2), p.619-641</ispartof><rights>Copyright ©2011 Society for Industrial and Applied Mathematics</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Society for Industrial and Applied Mathematics 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-64c7b84663a06835252eeef2d4f341945dcc5148cc2e8a8c221e616d5614d3623</citedby><cites>FETCH-LOGICAL-c375t-64c7b84663a06835252eeef2d4f341945dcc5148cc2e8a8c221e616d5614d3623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23074414$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23074414$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,3184,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24388580$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>QIU, WEIFENG</creatorcontrib><creatorcontrib>DEMKOWICZ, LESZEK</creatorcontrib><title>MIXED HP-FINITE ELEMENT METHOD FOR LINEAR ELASTICITY WITH WEAKLY IMPOSED SYMMETRY: STABILITY ANALYSIS</title><title>SIAM journal on numerical analysis</title><description>The paper presents a generalization of Arnold—Falk—Winther elements for linear elasticity to meshes with elements of variable order. The generalization is straightforward but the stability analysis involves a nontrivial modification of involved interpolation operators. The analysis addresses only the h-convergence. In addition, numerical experiments for two dimensional cases are provided.</description><subject>Algebra</subject><subject>Approximation</subject><subject>Approximations and expansions</subject><subject>Convergence</subject><subject>Elasticity</subject><subject>Exact sciences and technology</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Interpolation</subject><subject>Linear transformations</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematical vectors</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical approximation</subject><subject>Operators</subject><subject>Polynomials</subject><subject>Sciences and techniques of general use</subject><subject>Stability analysis</subject><subject>Studies</subject><subject>Symmetry</subject><subject>Tetrahedrons</subject><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkF1L40AUhgdZwa564Q8QBkFkL6Jz5isT72KdbgeTVpqIm6uQnU6gpW00017sv98pFQWvDofzvA-HF6ELILcALL4DQuIkFiw5QgMgiYhiiMkPNCCEyQg4TU7QT--XJOwK2AC53PzRj3j8HI3MxJQa60znelLiXJfj6SMeTWc4MxOdzsIlLUozNGWFX005xq86fcoqbPLnaREURZWHzKy6x0WZPphsz6WTNKsKU5yh47ZZeXf-MU_Ry0iXw3GUTX-bYZpFlsViG0lu47-KS8kaIhUTVFDnXEvnvGUcEi7m1grgylrqVKMspeAkyLmQwOdMUnaKbg7et7573zm_rdcLb91q1Wxct_N1QkAGDezJq2_kstv1m_BcrRQhMqHAAvTrANm-8753bf3WL9ZN_68GUu_rrj_rDuz1h7Dxtlm1fbOxC_8ZoJwpJRQJ3OWBW_pt13_dGYk5B87-A5V-fUM</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>QIU, WEIFENG</creator><creator>DEMKOWICZ, LESZEK</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110101</creationdate><title>MIXED HP-FINITE ELEMENT METHOD FOR LINEAR ELASTICITY WITH WEAKLY IMPOSED SYMMETRY: STABILITY ANALYSIS</title><author>QIU, WEIFENG ; DEMKOWICZ, LESZEK</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-64c7b84663a06835252eeef2d4f341945dcc5148cc2e8a8c221e616d5614d3623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algebra</topic><topic>Approximation</topic><topic>Approximations and expansions</topic><topic>Convergence</topic><topic>Elasticity</topic><topic>Exact sciences and technology</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Interpolation</topic><topic>Linear transformations</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematical vectors</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical approximation</topic><topic>Operators</topic><topic>Polynomials</topic><topic>Sciences and techniques of general use</topic><topic>Stability analysis</topic><topic>Studies</topic><topic>Symmetry</topic><topic>Tetrahedrons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>QIU, WEIFENG</creatorcontrib><creatorcontrib>DEMKOWICZ, LESZEK</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>QIU, WEIFENG</au><au>DEMKOWICZ, LESZEK</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MIXED HP-FINITE ELEMENT METHOD FOR LINEAR ELASTICITY WITH WEAKLY IMPOSED SYMMETRY: STABILITY ANALYSIS</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>2011-01-01</date><risdate>2011</risdate><volume>49</volume><issue>1/2</issue><spage>619</spage><epage>641</epage><pages>619-641</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><coden>SJNAEQ</coden><abstract>The paper presents a generalization of Arnold—Falk—Winther elements for linear elasticity to meshes with elements of variable order. The generalization is straightforward but the stability analysis involves a nontrivial modification of involved interpolation operators. The analysis addresses only the h-convergence. In addition, numerical experiments for two dimensional cases are provided.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/100797539</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1429 |
ispartof | SIAM journal on numerical analysis, 2011-01, Vol.49 (1/2), p.619-641 |
issn | 0036-1429 1095-7170 |
language | eng |
recordid | cdi_proquest_miscellaneous_901694512 |
source | SIAM Journals Online; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing |
subjects | Algebra Approximation Approximations and expansions Convergence Elasticity Exact sciences and technology Finite element analysis Finite element method Interpolation Linear transformations Mathematical analysis Mathematical models Mathematical vectors Mathematics Numerical analysis Numerical analysis. Scientific computation Numerical approximation Operators Polynomials Sciences and techniques of general use Stability analysis Studies Symmetry Tetrahedrons |
title | MIXED HP-FINITE ELEMENT METHOD FOR LINEAR ELASTICITY WITH WEAKLY IMPOSED SYMMETRY: STABILITY ANALYSIS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T10%3A02%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MIXED%20HP-FINITE%20ELEMENT%20METHOD%20FOR%20LINEAR%20ELASTICITY%20WITH%20WEAKLY%20IMPOSED%20SYMMETRY:%20STABILITY%20ANALYSIS&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=QIU,%20WEIFENG&rft.date=2011-01-01&rft.volume=49&rft.issue=1/2&rft.spage=619&rft.epage=641&rft.pages=619-641&rft.issn=0036-1429&rft.eissn=1095-7170&rft.coden=SJNAEQ&rft_id=info:doi/10.1137/100797539&rft_dat=%3Cjstor_proqu%3E23074414%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=880069213&rft_id=info:pmid/&rft_jstor_id=23074414&rfr_iscdi=true |