Linear loss networks

This paper investigates theoretical properties of throughput and cost in linear loss networks. The maximum throughput of the network with exponential service times is derived and the arrival process that maximizes throughput, given a fixed arrival rate, is established. For general service times, an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Queueing systems 2011-06, Vol.68 (2), p.111-131
Hauptverfasser: Momčilović, Petar, Squillante, Mark S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 131
container_issue 2
container_start_page 111
container_title Queueing systems
container_volume 68
creator Momčilović, Petar
Squillante, Mark S.
description This paper investigates theoretical properties of throughput and cost in linear loss networks. The maximum throughput of the network with exponential service times is derived and the arrival process that maximizes throughput, given a fixed arrival rate, is established. For general service times, an asymptotically critical loading regime is identified such that the probability of an arbitrary customer being lost is strictly within (0,1) as the network size increases. This regime delivers throughput comparable to the maximum at a relatively low network cost. The paper establishes the asymptotic throughput and network cost under this critical loading.
doi_str_mv 10.1007/s11134-011-9230-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901694261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2402677601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-146ac2dc560912b14e90e9730678484e9f0209c1d72b17bf55b5f609214869473</originalsourceid><addsrcrecordid>eNp1kM1LxDAQxYMoWFdvXrwtXjxFZ_Kdoyx-QcGLnkObTaVrt12TFvG_N0sFQfA0DO_3HjOPkAuEawTQNwkRuaCASC3jQOUBKVBqRq0Q_JAUwKTOKodjcpLSBgAUk7Yg52XbhyouuyGlZR_GzyG-p1Ny1FRdCmc_c0Fe7-9eVo-0fH54Wt2W1HOhR4pCVZ6tvVRgkdUogoVgNQeljTB5a4CB9bjWWdR1I2Utm8wyFEZZofmCXM25uzh8TCGNbtsmH7qu6sMwJWcBM8cUZvLyD7kZptjn45zRBhTnwmQIZ8jH_E0MjdvFdlvFL4fg9i25uSWXW3L7lpzMHjZ7Umb7txB_g_83fQPWb2Wx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>878063348</pqid></control><display><type>article</type><title>Linear loss networks</title><source>SpringerLink Journals - AutoHoldings</source><creator>Momčilović, Petar ; Squillante, Mark S.</creator><creatorcontrib>Momčilović, Petar ; Squillante, Mark S.</creatorcontrib><description>This paper investigates theoretical properties of throughput and cost in linear loss networks. The maximum throughput of the network with exponential service times is derived and the arrival process that maximizes throughput, given a fixed arrival rate, is established. For general service times, an asymptotically critical loading regime is identified such that the probability of an arbitrary customer being lost is strictly within (0,1) as the network size increases. This regime delivers throughput comparable to the maximum at a relatively low network cost. The paper establishes the asymptotic throughput and network cost under this critical loading.</description><identifier>ISSN: 0257-0130</identifier><identifier>EISSN: 1572-9443</identifier><identifier>DOI: 10.1007/s11134-011-9230-5</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Approximation ; Arrivals ; Asymptotic methods ; Asymptotic properties ; Business and Management ; Computer Communication Networks ; Control ; Critical loading ; Customer satisfaction ; Customer services ; Networks ; Operations Research/Decision Theory ; Probability Theory and Stochastic Processes ; Queues ; Queuing ; Queuing theory ; Random variables ; Studies ; Supply Chain Management ; Systems Theory ; Wireless networks</subject><ispartof>Queueing systems, 2011-06, Vol.68 (2), p.111-131</ispartof><rights>Springer Science+Business Media, LLC 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-146ac2dc560912b14e90e9730678484e9f0209c1d72b17bf55b5f609214869473</citedby><cites>FETCH-LOGICAL-c347t-146ac2dc560912b14e90e9730678484e9f0209c1d72b17bf55b5f609214869473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11134-011-9230-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11134-011-9230-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Momčilović, Petar</creatorcontrib><creatorcontrib>Squillante, Mark S.</creatorcontrib><title>Linear loss networks</title><title>Queueing systems</title><addtitle>Queueing Syst</addtitle><description>This paper investigates theoretical properties of throughput and cost in linear loss networks. The maximum throughput of the network with exponential service times is derived and the arrival process that maximizes throughput, given a fixed arrival rate, is established. For general service times, an asymptotically critical loading regime is identified such that the probability of an arbitrary customer being lost is strictly within (0,1) as the network size increases. This regime delivers throughput comparable to the maximum at a relatively low network cost. The paper establishes the asymptotic throughput and network cost under this critical loading.</description><subject>Approximation</subject><subject>Arrivals</subject><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Business and Management</subject><subject>Computer Communication Networks</subject><subject>Control</subject><subject>Critical loading</subject><subject>Customer satisfaction</subject><subject>Customer services</subject><subject>Networks</subject><subject>Operations Research/Decision Theory</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Queues</subject><subject>Queuing</subject><subject>Queuing theory</subject><subject>Random variables</subject><subject>Studies</subject><subject>Supply Chain Management</subject><subject>Systems Theory</subject><subject>Wireless networks</subject><issn>0257-0130</issn><issn>1572-9443</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kM1LxDAQxYMoWFdvXrwtXjxFZ_Kdoyx-QcGLnkObTaVrt12TFvG_N0sFQfA0DO_3HjOPkAuEawTQNwkRuaCASC3jQOUBKVBqRq0Q_JAUwKTOKodjcpLSBgAUk7Yg52XbhyouuyGlZR_GzyG-p1Ny1FRdCmc_c0Fe7-9eVo-0fH54Wt2W1HOhR4pCVZ6tvVRgkdUogoVgNQeljTB5a4CB9bjWWdR1I2Utm8wyFEZZofmCXM25uzh8TCGNbtsmH7qu6sMwJWcBM8cUZvLyD7kZptjn45zRBhTnwmQIZ8jH_E0MjdvFdlvFL4fg9i25uSWXW3L7lpzMHjZ7Umb7txB_g_83fQPWb2Wx</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Momčilović, Petar</creator><creator>Squillante, Mark S.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20110601</creationdate><title>Linear loss networks</title><author>Momčilović, Petar ; Squillante, Mark S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-146ac2dc560912b14e90e9730678484e9f0209c1d72b17bf55b5f609214869473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Approximation</topic><topic>Arrivals</topic><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Business and Management</topic><topic>Computer Communication Networks</topic><topic>Control</topic><topic>Critical loading</topic><topic>Customer satisfaction</topic><topic>Customer services</topic><topic>Networks</topic><topic>Operations Research/Decision Theory</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Queues</topic><topic>Queuing</topic><topic>Queuing theory</topic><topic>Random variables</topic><topic>Studies</topic><topic>Supply Chain Management</topic><topic>Systems Theory</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Momčilović, Petar</creatorcontrib><creatorcontrib>Squillante, Mark S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Queueing systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Momčilović, Petar</au><au>Squillante, Mark S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linear loss networks</atitle><jtitle>Queueing systems</jtitle><stitle>Queueing Syst</stitle><date>2011-06-01</date><risdate>2011</risdate><volume>68</volume><issue>2</issue><spage>111</spage><epage>131</epage><pages>111-131</pages><issn>0257-0130</issn><eissn>1572-9443</eissn><abstract>This paper investigates theoretical properties of throughput and cost in linear loss networks. The maximum throughput of the network with exponential service times is derived and the arrival process that maximizes throughput, given a fixed arrival rate, is established. For general service times, an asymptotically critical loading regime is identified such that the probability of an arbitrary customer being lost is strictly within (0,1) as the network size increases. This regime delivers throughput comparable to the maximum at a relatively low network cost. The paper establishes the asymptotic throughput and network cost under this critical loading.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11134-011-9230-5</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0257-0130
ispartof Queueing systems, 2011-06, Vol.68 (2), p.111-131
issn 0257-0130
1572-9443
language eng
recordid cdi_proquest_miscellaneous_901694261
source SpringerLink Journals - AutoHoldings
subjects Approximation
Arrivals
Asymptotic methods
Asymptotic properties
Business and Management
Computer Communication Networks
Control
Critical loading
Customer satisfaction
Customer services
Networks
Operations Research/Decision Theory
Probability Theory and Stochastic Processes
Queues
Queuing
Queuing theory
Random variables
Studies
Supply Chain Management
Systems Theory
Wireless networks
title Linear loss networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T20%3A12%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linear%20loss%20networks&rft.jtitle=Queueing%20systems&rft.au=Mom%C4%8Dilovi%C4%87,%20Petar&rft.date=2011-06-01&rft.volume=68&rft.issue=2&rft.spage=111&rft.epage=131&rft.pages=111-131&rft.issn=0257-0130&rft.eissn=1572-9443&rft_id=info:doi/10.1007/s11134-011-9230-5&rft_dat=%3Cproquest_cross%3E2402677601%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=878063348&rft_id=info:pmid/&rfr_iscdi=true