Linear loss networks
This paper investigates theoretical properties of throughput and cost in linear loss networks. The maximum throughput of the network with exponential service times is derived and the arrival process that maximizes throughput, given a fixed arrival rate, is established. For general service times, an...
Gespeichert in:
Veröffentlicht in: | Queueing systems 2011-06, Vol.68 (2), p.111-131 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 131 |
---|---|
container_issue | 2 |
container_start_page | 111 |
container_title | Queueing systems |
container_volume | 68 |
creator | Momčilović, Petar Squillante, Mark S. |
description | This paper investigates theoretical properties of throughput and cost in linear loss networks. The maximum throughput of the network with exponential service times is derived and the arrival process that maximizes throughput, given a fixed arrival rate, is established. For general service times, an asymptotically critical loading regime is identified such that the probability of an arbitrary customer being lost is strictly within (0,1) as the network size increases. This regime delivers throughput comparable to the maximum at a relatively low network cost. The paper establishes the asymptotic throughput and network cost under this critical loading. |
doi_str_mv | 10.1007/s11134-011-9230-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901694261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2402677601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-146ac2dc560912b14e90e9730678484e9f0209c1d72b17bf55b5f609214869473</originalsourceid><addsrcrecordid>eNp1kM1LxDAQxYMoWFdvXrwtXjxFZ_Kdoyx-QcGLnkObTaVrt12TFvG_N0sFQfA0DO_3HjOPkAuEawTQNwkRuaCASC3jQOUBKVBqRq0Q_JAUwKTOKodjcpLSBgAUk7Yg52XbhyouuyGlZR_GzyG-p1Ny1FRdCmc_c0Fe7-9eVo-0fH54Wt2W1HOhR4pCVZ6tvVRgkdUogoVgNQeljTB5a4CB9bjWWdR1I2Utm8wyFEZZofmCXM25uzh8TCGNbtsmH7qu6sMwJWcBM8cUZvLyD7kZptjn45zRBhTnwmQIZ8jH_E0MjdvFdlvFL4fg9i25uSWXW3L7lpzMHjZ7Umb7txB_g_83fQPWb2Wx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>878063348</pqid></control><display><type>article</type><title>Linear loss networks</title><source>SpringerLink Journals - AutoHoldings</source><creator>Momčilović, Petar ; Squillante, Mark S.</creator><creatorcontrib>Momčilović, Petar ; Squillante, Mark S.</creatorcontrib><description>This paper investigates theoretical properties of throughput and cost in linear loss networks. The maximum throughput of the network with exponential service times is derived and the arrival process that maximizes throughput, given a fixed arrival rate, is established. For general service times, an asymptotically critical loading regime is identified such that the probability of an arbitrary customer being lost is strictly within (0,1) as the network size increases. This regime delivers throughput comparable to the maximum at a relatively low network cost. The paper establishes the asymptotic throughput and network cost under this critical loading.</description><identifier>ISSN: 0257-0130</identifier><identifier>EISSN: 1572-9443</identifier><identifier>DOI: 10.1007/s11134-011-9230-5</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Approximation ; Arrivals ; Asymptotic methods ; Asymptotic properties ; Business and Management ; Computer Communication Networks ; Control ; Critical loading ; Customer satisfaction ; Customer services ; Networks ; Operations Research/Decision Theory ; Probability Theory and Stochastic Processes ; Queues ; Queuing ; Queuing theory ; Random variables ; Studies ; Supply Chain Management ; Systems Theory ; Wireless networks</subject><ispartof>Queueing systems, 2011-06, Vol.68 (2), p.111-131</ispartof><rights>Springer Science+Business Media, LLC 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-146ac2dc560912b14e90e9730678484e9f0209c1d72b17bf55b5f609214869473</citedby><cites>FETCH-LOGICAL-c347t-146ac2dc560912b14e90e9730678484e9f0209c1d72b17bf55b5f609214869473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11134-011-9230-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11134-011-9230-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Momčilović, Petar</creatorcontrib><creatorcontrib>Squillante, Mark S.</creatorcontrib><title>Linear loss networks</title><title>Queueing systems</title><addtitle>Queueing Syst</addtitle><description>This paper investigates theoretical properties of throughput and cost in linear loss networks. The maximum throughput of the network with exponential service times is derived and the arrival process that maximizes throughput, given a fixed arrival rate, is established. For general service times, an asymptotically critical loading regime is identified such that the probability of an arbitrary customer being lost is strictly within (0,1) as the network size increases. This regime delivers throughput comparable to the maximum at a relatively low network cost. The paper establishes the asymptotic throughput and network cost under this critical loading.</description><subject>Approximation</subject><subject>Arrivals</subject><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Business and Management</subject><subject>Computer Communication Networks</subject><subject>Control</subject><subject>Critical loading</subject><subject>Customer satisfaction</subject><subject>Customer services</subject><subject>Networks</subject><subject>Operations Research/Decision Theory</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Queues</subject><subject>Queuing</subject><subject>Queuing theory</subject><subject>Random variables</subject><subject>Studies</subject><subject>Supply Chain Management</subject><subject>Systems Theory</subject><subject>Wireless networks</subject><issn>0257-0130</issn><issn>1572-9443</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kM1LxDAQxYMoWFdvXrwtXjxFZ_Kdoyx-QcGLnkObTaVrt12TFvG_N0sFQfA0DO_3HjOPkAuEawTQNwkRuaCASC3jQOUBKVBqRq0Q_JAUwKTOKodjcpLSBgAUk7Yg52XbhyouuyGlZR_GzyG-p1Ny1FRdCmc_c0Fe7-9eVo-0fH54Wt2W1HOhR4pCVZ6tvVRgkdUogoVgNQeljTB5a4CB9bjWWdR1I2Utm8wyFEZZofmCXM25uzh8TCGNbtsmH7qu6sMwJWcBM8cUZvLyD7kZptjn45zRBhTnwmQIZ8jH_E0MjdvFdlvFL4fg9i25uSWXW3L7lpzMHjZ7Umb7txB_g_83fQPWb2Wx</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Momčilović, Petar</creator><creator>Squillante, Mark S.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20110601</creationdate><title>Linear loss networks</title><author>Momčilović, Petar ; Squillante, Mark S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-146ac2dc560912b14e90e9730678484e9f0209c1d72b17bf55b5f609214869473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Approximation</topic><topic>Arrivals</topic><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Business and Management</topic><topic>Computer Communication Networks</topic><topic>Control</topic><topic>Critical loading</topic><topic>Customer satisfaction</topic><topic>Customer services</topic><topic>Networks</topic><topic>Operations Research/Decision Theory</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Queues</topic><topic>Queuing</topic><topic>Queuing theory</topic><topic>Random variables</topic><topic>Studies</topic><topic>Supply Chain Management</topic><topic>Systems Theory</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Momčilović, Petar</creatorcontrib><creatorcontrib>Squillante, Mark S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Queueing systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Momčilović, Petar</au><au>Squillante, Mark S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linear loss networks</atitle><jtitle>Queueing systems</jtitle><stitle>Queueing Syst</stitle><date>2011-06-01</date><risdate>2011</risdate><volume>68</volume><issue>2</issue><spage>111</spage><epage>131</epage><pages>111-131</pages><issn>0257-0130</issn><eissn>1572-9443</eissn><abstract>This paper investigates theoretical properties of throughput and cost in linear loss networks. The maximum throughput of the network with exponential service times is derived and the arrival process that maximizes throughput, given a fixed arrival rate, is established. For general service times, an asymptotically critical loading regime is identified such that the probability of an arbitrary customer being lost is strictly within (0,1) as the network size increases. This regime delivers throughput comparable to the maximum at a relatively low network cost. The paper establishes the asymptotic throughput and network cost under this critical loading.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11134-011-9230-5</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0257-0130 |
ispartof | Queueing systems, 2011-06, Vol.68 (2), p.111-131 |
issn | 0257-0130 1572-9443 |
language | eng |
recordid | cdi_proquest_miscellaneous_901694261 |
source | SpringerLink Journals - AutoHoldings |
subjects | Approximation Arrivals Asymptotic methods Asymptotic properties Business and Management Computer Communication Networks Control Critical loading Customer satisfaction Customer services Networks Operations Research/Decision Theory Probability Theory and Stochastic Processes Queues Queuing Queuing theory Random variables Studies Supply Chain Management Systems Theory Wireless networks |
title | Linear loss networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T20%3A12%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linear%20loss%20networks&rft.jtitle=Queueing%20systems&rft.au=Mom%C4%8Dilovi%C4%87,%20Petar&rft.date=2011-06-01&rft.volume=68&rft.issue=2&rft.spage=111&rft.epage=131&rft.pages=111-131&rft.issn=0257-0130&rft.eissn=1572-9443&rft_id=info:doi/10.1007/s11134-011-9230-5&rft_dat=%3Cproquest_cross%3E2402677601%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=878063348&rft_id=info:pmid/&rfr_iscdi=true |