Phase description of nonlinear dissipative waves under space–time-dependent external forcing

Based on the model system undergoing phase separation and chemical reactions, we investigate the dynamics of propagating dissipative waves under external forcing which is periodic both in space and time. A phase diagram for the entrained and non-entrained states under the external forcing is obtaine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica. D 2010-09, Vol.239 (17), p.1718-1722
Hauptverfasser: Tonosaki, Y., Ohta, T., Zykov, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1722
container_issue 17
container_start_page 1718
container_title Physica. D
container_volume 239
creator Tonosaki, Y.
Ohta, T.
Zykov, V.
description Based on the model system undergoing phase separation and chemical reactions, we investigate the dynamics of propagating dissipative waves under external forcing which is periodic both in space and time. A phase diagram for the entrained and non-entrained states under the external forcing is obtained numerically. Theoretical analysis in terms of phase description of the traveling waves is carried out to show that the transition between the entrained and the non-entrained states by changing the external frequency occurs either through a saddle–node bifurcation or through a Hopf bifurcation and that these two bifurcation lines are connected at a Bogdanov–Takens bifurcation point.
doi_str_mv 10.1016/j.physd.2010.05.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901690712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167278910001491</els_id><sourcerecordid>901690712</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-a457cb918f34e7ba6e54c0cb7a4e28e31799aa19c36d069663939ce70caa0e223</originalsourceid><addsrcrecordid>eNp9kM1uFDEQhC0EEkuSJ-DiC-I0m7Y9Mx4fOKCIPykSHMI1Vq-nh3g16xncsxty4x14Q54ELxtx5NRS6atqVQnxUsFagWovt-v57oH7tYaiQLMGaJ6IleqsrjrQ-qlYFcpW2nbuuXjBvAUAZY1didsvd8gke-KQ47zEKclpkGlKY0yEWfaROc64xAPJezwQy33qKUueMdDvn7-WuKOqp5mKmhZJPxbKCUc5TDnE9O1cPBtwZLp4vGfi6_t3N1cfq-vPHz5dvb2uQg31UmHd2LBxqhtMTXaDLTV1gLCxWJPuyCjrHKJywbQ9tK5tjTMukIWACKS1OROvT7lznr7viRe_ixxoHDHRtGfvSn8HVh1JcyJDnpgzDX7OcYf5wSvwxzH91v8d0x_H9ND4MmZxvXrMRw44DhlTiPzPqg00TTEX7s2Jo1L2ECl7DpFSoD5mCovvp_jfP38AKkOOMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901690712</pqid></control><display><type>article</type><title>Phase description of nonlinear dissipative waves under space–time-dependent external forcing</title><source>Access via ScienceDirect (Elsevier)</source><creator>Tonosaki, Y. ; Ohta, T. ; Zykov, V.</creator><creatorcontrib>Tonosaki, Y. ; Ohta, T. ; Zykov, V.</creatorcontrib><description>Based on the model system undergoing phase separation and chemical reactions, we investigate the dynamics of propagating dissipative waves under external forcing which is periodic both in space and time. A phase diagram for the entrained and non-entrained states under the external forcing is obtained numerically. Theoretical analysis in terms of phase description of the traveling waves is carried out to show that the transition between the entrained and the non-entrained states by changing the external frequency occurs either through a saddle–node bifurcation or through a Hopf bifurcation and that these two bifurcation lines are connected at a Bogdanov–Takens bifurcation point.</description><identifier>ISSN: 0167-2789</identifier><identifier>EISSN: 1872-8022</identifier><identifier>DOI: 10.1016/j.physd.2010.05.005</identifier><identifier>CODEN: PDNPDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Bifurcation theory ; Dissipation ; Dynamical systems ; Entrainment ; Exact sciences and technology ; External forcing ; Hopf bifurcation ; Mathematical models ; Nonlinear dissipative waves ; Nonlinear dynamics ; Pattern formation ; Phase diagrams ; Phase dynamics ; Physics ; Wave propagation</subject><ispartof>Physica. D, 2010-09, Vol.239 (17), p.1718-1722</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c404t-a457cb918f34e7ba6e54c0cb7a4e28e31799aa19c36d069663939ce70caa0e223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.physd.2010.05.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23055101$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tonosaki, Y.</creatorcontrib><creatorcontrib>Ohta, T.</creatorcontrib><creatorcontrib>Zykov, V.</creatorcontrib><title>Phase description of nonlinear dissipative waves under space–time-dependent external forcing</title><title>Physica. D</title><description>Based on the model system undergoing phase separation and chemical reactions, we investigate the dynamics of propagating dissipative waves under external forcing which is periodic both in space and time. A phase diagram for the entrained and non-entrained states under the external forcing is obtained numerically. Theoretical analysis in terms of phase description of the traveling waves is carried out to show that the transition between the entrained and the non-entrained states by changing the external frequency occurs either through a saddle–node bifurcation or through a Hopf bifurcation and that these two bifurcation lines are connected at a Bogdanov–Takens bifurcation point.</description><subject>Bifurcation theory</subject><subject>Dissipation</subject><subject>Dynamical systems</subject><subject>Entrainment</subject><subject>Exact sciences and technology</subject><subject>External forcing</subject><subject>Hopf bifurcation</subject><subject>Mathematical models</subject><subject>Nonlinear dissipative waves</subject><subject>Nonlinear dynamics</subject><subject>Pattern formation</subject><subject>Phase diagrams</subject><subject>Phase dynamics</subject><subject>Physics</subject><subject>Wave propagation</subject><issn>0167-2789</issn><issn>1872-8022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kM1uFDEQhC0EEkuSJ-DiC-I0m7Y9Mx4fOKCIPykSHMI1Vq-nh3g16xncsxty4x14Q54ELxtx5NRS6atqVQnxUsFagWovt-v57oH7tYaiQLMGaJ6IleqsrjrQ-qlYFcpW2nbuuXjBvAUAZY1didsvd8gke-KQ47zEKclpkGlKY0yEWfaROc64xAPJezwQy33qKUueMdDvn7-WuKOqp5mKmhZJPxbKCUc5TDnE9O1cPBtwZLp4vGfi6_t3N1cfq-vPHz5dvb2uQg31UmHd2LBxqhtMTXaDLTV1gLCxWJPuyCjrHKJywbQ9tK5tjTMukIWACKS1OROvT7lznr7viRe_ixxoHDHRtGfvSn8HVh1JcyJDnpgzDX7OcYf5wSvwxzH91v8d0x_H9ND4MmZxvXrMRw44DhlTiPzPqg00TTEX7s2Jo1L2ECl7DpFSoD5mCovvp_jfP38AKkOOMw</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Tonosaki, Y.</creator><creator>Ohta, T.</creator><creator>Zykov, V.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20100901</creationdate><title>Phase description of nonlinear dissipative waves under space–time-dependent external forcing</title><author>Tonosaki, Y. ; Ohta, T. ; Zykov, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-a457cb918f34e7ba6e54c0cb7a4e28e31799aa19c36d069663939ce70caa0e223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Bifurcation theory</topic><topic>Dissipation</topic><topic>Dynamical systems</topic><topic>Entrainment</topic><topic>Exact sciences and technology</topic><topic>External forcing</topic><topic>Hopf bifurcation</topic><topic>Mathematical models</topic><topic>Nonlinear dissipative waves</topic><topic>Nonlinear dynamics</topic><topic>Pattern formation</topic><topic>Phase diagrams</topic><topic>Phase dynamics</topic><topic>Physics</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tonosaki, Y.</creatorcontrib><creatorcontrib>Ohta, T.</creatorcontrib><creatorcontrib>Zykov, V.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tonosaki, Y.</au><au>Ohta, T.</au><au>Zykov, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase description of nonlinear dissipative waves under space–time-dependent external forcing</atitle><jtitle>Physica. D</jtitle><date>2010-09-01</date><risdate>2010</risdate><volume>239</volume><issue>17</issue><spage>1718</spage><epage>1722</epage><pages>1718-1722</pages><issn>0167-2789</issn><eissn>1872-8022</eissn><coden>PDNPDT</coden><abstract>Based on the model system undergoing phase separation and chemical reactions, we investigate the dynamics of propagating dissipative waves under external forcing which is periodic both in space and time. A phase diagram for the entrained and non-entrained states under the external forcing is obtained numerically. Theoretical analysis in terms of phase description of the traveling waves is carried out to show that the transition between the entrained and the non-entrained states by changing the external frequency occurs either through a saddle–node bifurcation or through a Hopf bifurcation and that these two bifurcation lines are connected at a Bogdanov–Takens bifurcation point.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.physd.2010.05.005</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-2789
ispartof Physica. D, 2010-09, Vol.239 (17), p.1718-1722
issn 0167-2789
1872-8022
language eng
recordid cdi_proquest_miscellaneous_901690712
source Access via ScienceDirect (Elsevier)
subjects Bifurcation theory
Dissipation
Dynamical systems
Entrainment
Exact sciences and technology
External forcing
Hopf bifurcation
Mathematical models
Nonlinear dissipative waves
Nonlinear dynamics
Pattern formation
Phase diagrams
Phase dynamics
Physics
Wave propagation
title Phase description of nonlinear dissipative waves under space–time-dependent external forcing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T23%3A41%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20description%20of%20nonlinear%20dissipative%20waves%20under%20space%E2%80%93time-dependent%20external%20forcing&rft.jtitle=Physica.%20D&rft.au=Tonosaki,%20Y.&rft.date=2010-09-01&rft.volume=239&rft.issue=17&rft.spage=1718&rft.epage=1722&rft.pages=1718-1722&rft.issn=0167-2789&rft.eissn=1872-8022&rft.coden=PDNPDT&rft_id=info:doi/10.1016/j.physd.2010.05.005&rft_dat=%3Cproquest_cross%3E901690712%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=901690712&rft_id=info:pmid/&rft_els_id=S0167278910001491&rfr_iscdi=true