Grain boundary engineering of austenitic steel PNC316 for use in nuclear reactors
Austenitic stainless steel PNC316 was subjected to grain boundary engineering (GBE). It was found that the grain boundary engineered PNC316 (PNC316-GBEM) had a coincidence site lattice (CSL) fraction of 86% and that the network of random grain boundaries was perfectly divided by the CSL boundaries....
Gespeichert in:
Veröffentlicht in: | Journal of nuclear materials 2011-07, Vol.414 (2), p.232-236 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 236 |
---|---|
container_issue | 2 |
container_start_page | 232 |
container_title | Journal of nuclear materials |
container_volume | 414 |
creator | Sekine, M. Sakaguchi, N. Endo, M. Kinoshita, H. Watanabe, S. Kokawa, H. Yamashita, S. Yano, Y. Kawai, M. |
description | Austenitic stainless steel PNC316 was subjected to grain boundary engineering (GBE). It was found that the grain boundary engineered PNC316 (PNC316-GBEM) had a coincidence site lattice (CSL) fraction of 86% and that the network of random grain boundaries was perfectly divided by the CSL boundaries. The thermal stability and the void swelling behavior of PNC316-GBEM were investigated by means of SEM and TEM analyses. After thermal aging at 973
K for 100
h, structural changes were observed neither in the grain boundary networks of PNC316-GBEM nor in another sample of PNC316-GBEM subjected to 20% additional cold rolling, PNC316-GBEM20%CW. PNC316-GBEM showed a higher void swelling rate than as-received PNC316 (PNC316-AS). However, with additional 20% cold rolling after GBE, the void swelling rate decreased to as low as that of PNC316-AS. |
doi_str_mv | 10.1016/j.jnucmat.2011.03.049 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901689366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022311511003321</els_id><sourcerecordid>901689366</sourcerecordid><originalsourceid>FETCH-LOGICAL-c557t-50e5bb160f3eb7851cbf2caf8e3510eb5b83e07c1f2df597b1b647ab6d2ef1bf3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKs_QchFPO062Wz24yRStArFD9BzSLKTkrLN1mRX8N8bafHqaebwvPMyDyGXDHIGrLrZ5Bs_ma0a8wIYy4HnULZHZMaammdlU8AxmQEURcYZE6fkLMYNAIgWxIy8LYNynuph8p0K3xT92nnE4PyaDpaqKY7o3egMTQv29PV5wVlF7RDoFJGmaKruUQUaUJlxCPGcnFjVR7w4zDn5eLh_Xzxmq5fl0-JulRkh6jETgEJrVoHlqOtGMKNtYZRtkAsGqIVuOEJtmC06K9paM12VtdJVV6Bl2vI5ud7f3YXhc8I4yq2LBvteeRymKNukpml5VSVS7EkThhgDWrkLbpu-lQzkr0G5kQeD8tegBC6TwZS7OjSoaFRvg_LGxb9wUZYVh0Yk7nbPYXr3y2GQ0Tj0BjsX0IyyG9w_TT8KBopA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901689366</pqid></control><display><type>article</type><title>Grain boundary engineering of austenitic steel PNC316 for use in nuclear reactors</title><source>Elsevier ScienceDirect Journals</source><creator>Sekine, M. ; Sakaguchi, N. ; Endo, M. ; Kinoshita, H. ; Watanabe, S. ; Kokawa, H. ; Yamashita, S. ; Yano, Y. ; Kawai, M.</creator><creatorcontrib>Sekine, M. ; Sakaguchi, N. ; Endo, M. ; Kinoshita, H. ; Watanabe, S. ; Kokawa, H. ; Yamashita, S. ; Yano, Y. ; Kawai, M.</creatorcontrib><description>Austenitic stainless steel PNC316 was subjected to grain boundary engineering (GBE). It was found that the grain boundary engineered PNC316 (PNC316-GBEM) had a coincidence site lattice (CSL) fraction of 86% and that the network of random grain boundaries was perfectly divided by the CSL boundaries. The thermal stability and the void swelling behavior of PNC316-GBEM were investigated by means of SEM and TEM analyses. After thermal aging at 973
K for 100
h, structural changes were observed neither in the grain boundary networks of PNC316-GBEM nor in another sample of PNC316-GBEM subjected to 20% additional cold rolling, PNC316-GBEM20%CW. PNC316-GBEM showed a higher void swelling rate than as-received PNC316 (PNC316-AS). However, with additional 20% cold rolling after GBE, the void swelling rate decreased to as low as that of PNC316-AS.</description><identifier>ISSN: 0022-3115</identifier><identifier>EISSN: 1873-4820</identifier><identifier>DOI: 10.1016/j.jnucmat.2011.03.049</identifier><identifier>CODEN: JNUMAM</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Controled nuclear fusion plants ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Fission nuclear power plants ; Fuels ; Installations for energy generation and conversion: thermal and electrical energy ; Nuclear fuels</subject><ispartof>Journal of nuclear materials, 2011-07, Vol.414 (2), p.232-236</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c557t-50e5bb160f3eb7851cbf2caf8e3510eb5b83e07c1f2df597b1b647ab6d2ef1bf3</citedby><cites>FETCH-LOGICAL-c557t-50e5bb160f3eb7851cbf2caf8e3510eb5b83e07c1f2df597b1b647ab6d2ef1bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022311511003321$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23909,23910,25118,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24463085$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sekine, M.</creatorcontrib><creatorcontrib>Sakaguchi, N.</creatorcontrib><creatorcontrib>Endo, M.</creatorcontrib><creatorcontrib>Kinoshita, H.</creatorcontrib><creatorcontrib>Watanabe, S.</creatorcontrib><creatorcontrib>Kokawa, H.</creatorcontrib><creatorcontrib>Yamashita, S.</creatorcontrib><creatorcontrib>Yano, Y.</creatorcontrib><creatorcontrib>Kawai, M.</creatorcontrib><title>Grain boundary engineering of austenitic steel PNC316 for use in nuclear reactors</title><title>Journal of nuclear materials</title><description>Austenitic stainless steel PNC316 was subjected to grain boundary engineering (GBE). It was found that the grain boundary engineered PNC316 (PNC316-GBEM) had a coincidence site lattice (CSL) fraction of 86% and that the network of random grain boundaries was perfectly divided by the CSL boundaries. The thermal stability and the void swelling behavior of PNC316-GBEM were investigated by means of SEM and TEM analyses. After thermal aging at 973
K for 100
h, structural changes were observed neither in the grain boundary networks of PNC316-GBEM nor in another sample of PNC316-GBEM subjected to 20% additional cold rolling, PNC316-GBEM20%CW. PNC316-GBEM showed a higher void swelling rate than as-received PNC316 (PNC316-AS). However, with additional 20% cold rolling after GBE, the void swelling rate decreased to as low as that of PNC316-AS.</description><subject>Applied sciences</subject><subject>Controled nuclear fusion plants</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Fission nuclear power plants</subject><subject>Fuels</subject><subject>Installations for energy generation and conversion: thermal and electrical energy</subject><subject>Nuclear fuels</subject><issn>0022-3115</issn><issn>1873-4820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKs_QchFPO062Wz24yRStArFD9BzSLKTkrLN1mRX8N8bafHqaebwvPMyDyGXDHIGrLrZ5Bs_ma0a8wIYy4HnULZHZMaammdlU8AxmQEURcYZE6fkLMYNAIgWxIy8LYNynuph8p0K3xT92nnE4PyaDpaqKY7o3egMTQv29PV5wVlF7RDoFJGmaKruUQUaUJlxCPGcnFjVR7w4zDn5eLh_Xzxmq5fl0-JulRkh6jETgEJrVoHlqOtGMKNtYZRtkAsGqIVuOEJtmC06K9paM12VtdJVV6Bl2vI5ud7f3YXhc8I4yq2LBvteeRymKNukpml5VSVS7EkThhgDWrkLbpu-lQzkr0G5kQeD8tegBC6TwZS7OjSoaFRvg_LGxb9wUZYVh0Yk7nbPYXr3y2GQ0Tj0BjsX0IyyG9w_TT8KBopA</recordid><startdate>20110715</startdate><enddate>20110715</enddate><creator>Sekine, M.</creator><creator>Sakaguchi, N.</creator><creator>Endo, M.</creator><creator>Kinoshita, H.</creator><creator>Watanabe, S.</creator><creator>Kokawa, H.</creator><creator>Yamashita, S.</creator><creator>Yano, Y.</creator><creator>Kawai, M.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>20110715</creationdate><title>Grain boundary engineering of austenitic steel PNC316 for use in nuclear reactors</title><author>Sekine, M. ; Sakaguchi, N. ; Endo, M. ; Kinoshita, H. ; Watanabe, S. ; Kokawa, H. ; Yamashita, S. ; Yano, Y. ; Kawai, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c557t-50e5bb160f3eb7851cbf2caf8e3510eb5b83e07c1f2df597b1b647ab6d2ef1bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Controled nuclear fusion plants</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Fission nuclear power plants</topic><topic>Fuels</topic><topic>Installations for energy generation and conversion: thermal and electrical energy</topic><topic>Nuclear fuels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sekine, M.</creatorcontrib><creatorcontrib>Sakaguchi, N.</creatorcontrib><creatorcontrib>Endo, M.</creatorcontrib><creatorcontrib>Kinoshita, H.</creatorcontrib><creatorcontrib>Watanabe, S.</creatorcontrib><creatorcontrib>Kokawa, H.</creatorcontrib><creatorcontrib>Yamashita, S.</creatorcontrib><creatorcontrib>Yano, Y.</creatorcontrib><creatorcontrib>Kawai, M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Journal of nuclear materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sekine, M.</au><au>Sakaguchi, N.</au><au>Endo, M.</au><au>Kinoshita, H.</au><au>Watanabe, S.</au><au>Kokawa, H.</au><au>Yamashita, S.</au><au>Yano, Y.</au><au>Kawai, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Grain boundary engineering of austenitic steel PNC316 for use in nuclear reactors</atitle><jtitle>Journal of nuclear materials</jtitle><date>2011-07-15</date><risdate>2011</risdate><volume>414</volume><issue>2</issue><spage>232</spage><epage>236</epage><pages>232-236</pages><issn>0022-3115</issn><eissn>1873-4820</eissn><coden>JNUMAM</coden><abstract>Austenitic stainless steel PNC316 was subjected to grain boundary engineering (GBE). It was found that the grain boundary engineered PNC316 (PNC316-GBEM) had a coincidence site lattice (CSL) fraction of 86% and that the network of random grain boundaries was perfectly divided by the CSL boundaries. The thermal stability and the void swelling behavior of PNC316-GBEM were investigated by means of SEM and TEM analyses. After thermal aging at 973
K for 100
h, structural changes were observed neither in the grain boundary networks of PNC316-GBEM nor in another sample of PNC316-GBEM subjected to 20% additional cold rolling, PNC316-GBEM20%CW. PNC316-GBEM showed a higher void swelling rate than as-received PNC316 (PNC316-AS). However, with additional 20% cold rolling after GBE, the void swelling rate decreased to as low as that of PNC316-AS.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnucmat.2011.03.049</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3115 |
ispartof | Journal of nuclear materials, 2011-07, Vol.414 (2), p.232-236 |
issn | 0022-3115 1873-4820 |
language | eng |
recordid | cdi_proquest_miscellaneous_901689366 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Controled nuclear fusion plants Energy Energy. Thermal use of fuels Exact sciences and technology Fission nuclear power plants Fuels Installations for energy generation and conversion: thermal and electrical energy Nuclear fuels |
title | Grain boundary engineering of austenitic steel PNC316 for use in nuclear reactors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T21%3A18%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Grain%20boundary%20engineering%20of%20austenitic%20steel%20PNC316%20for%20use%20in%20nuclear%20reactors&rft.jtitle=Journal%20of%20nuclear%20materials&rft.au=Sekine,%20M.&rft.date=2011-07-15&rft.volume=414&rft.issue=2&rft.spage=232&rft.epage=236&rft.pages=232-236&rft.issn=0022-3115&rft.eissn=1873-4820&rft.coden=JNUMAM&rft_id=info:doi/10.1016/j.jnucmat.2011.03.049&rft_dat=%3Cproquest_cross%3E901689366%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=901689366&rft_id=info:pmid/&rft_els_id=S0022311511003321&rfr_iscdi=true |