Grain boundary engineering of austenitic steel PNC316 for use in nuclear reactors

Austenitic stainless steel PNC316 was subjected to grain boundary engineering (GBE). It was found that the grain boundary engineered PNC316 (PNC316-GBEM) had a coincidence site lattice (CSL) fraction of 86% and that the network of random grain boundaries was perfectly divided by the CSL boundaries....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nuclear materials 2011-07, Vol.414 (2), p.232-236
Hauptverfasser: Sekine, M., Sakaguchi, N., Endo, M., Kinoshita, H., Watanabe, S., Kokawa, H., Yamashita, S., Yano, Y., Kawai, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 236
container_issue 2
container_start_page 232
container_title Journal of nuclear materials
container_volume 414
creator Sekine, M.
Sakaguchi, N.
Endo, M.
Kinoshita, H.
Watanabe, S.
Kokawa, H.
Yamashita, S.
Yano, Y.
Kawai, M.
description Austenitic stainless steel PNC316 was subjected to grain boundary engineering (GBE). It was found that the grain boundary engineered PNC316 (PNC316-GBEM) had a coincidence site lattice (CSL) fraction of 86% and that the network of random grain boundaries was perfectly divided by the CSL boundaries. The thermal stability and the void swelling behavior of PNC316-GBEM were investigated by means of SEM and TEM analyses. After thermal aging at 973 K for 100 h, structural changes were observed neither in the grain boundary networks of PNC316-GBEM nor in another sample of PNC316-GBEM subjected to 20% additional cold rolling, PNC316-GBEM20%CW. PNC316-GBEM showed a higher void swelling rate than as-received PNC316 (PNC316-AS). However, with additional 20% cold rolling after GBE, the void swelling rate decreased to as low as that of PNC316-AS.
doi_str_mv 10.1016/j.jnucmat.2011.03.049
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901689366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022311511003321</els_id><sourcerecordid>901689366</sourcerecordid><originalsourceid>FETCH-LOGICAL-c557t-50e5bb160f3eb7851cbf2caf8e3510eb5b83e07c1f2df597b1b647ab6d2ef1bf3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKs_QchFPO062Wz24yRStArFD9BzSLKTkrLN1mRX8N8bafHqaebwvPMyDyGXDHIGrLrZ5Bs_ma0a8wIYy4HnULZHZMaammdlU8AxmQEURcYZE6fkLMYNAIgWxIy8LYNynuph8p0K3xT92nnE4PyaDpaqKY7o3egMTQv29PV5wVlF7RDoFJGmaKruUQUaUJlxCPGcnFjVR7w4zDn5eLh_Xzxmq5fl0-JulRkh6jETgEJrVoHlqOtGMKNtYZRtkAsGqIVuOEJtmC06K9paM12VtdJVV6Bl2vI5ud7f3YXhc8I4yq2LBvteeRymKNukpml5VSVS7EkThhgDWrkLbpu-lQzkr0G5kQeD8tegBC6TwZS7OjSoaFRvg_LGxb9wUZYVh0Yk7nbPYXr3y2GQ0Tj0BjsX0IyyG9w_TT8KBopA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901689366</pqid></control><display><type>article</type><title>Grain boundary engineering of austenitic steel PNC316 for use in nuclear reactors</title><source>Elsevier ScienceDirect Journals</source><creator>Sekine, M. ; Sakaguchi, N. ; Endo, M. ; Kinoshita, H. ; Watanabe, S. ; Kokawa, H. ; Yamashita, S. ; Yano, Y. ; Kawai, M.</creator><creatorcontrib>Sekine, M. ; Sakaguchi, N. ; Endo, M. ; Kinoshita, H. ; Watanabe, S. ; Kokawa, H. ; Yamashita, S. ; Yano, Y. ; Kawai, M.</creatorcontrib><description>Austenitic stainless steel PNC316 was subjected to grain boundary engineering (GBE). It was found that the grain boundary engineered PNC316 (PNC316-GBEM) had a coincidence site lattice (CSL) fraction of 86% and that the network of random grain boundaries was perfectly divided by the CSL boundaries. The thermal stability and the void swelling behavior of PNC316-GBEM were investigated by means of SEM and TEM analyses. After thermal aging at 973 K for 100 h, structural changes were observed neither in the grain boundary networks of PNC316-GBEM nor in another sample of PNC316-GBEM subjected to 20% additional cold rolling, PNC316-GBEM20%CW. PNC316-GBEM showed a higher void swelling rate than as-received PNC316 (PNC316-AS). However, with additional 20% cold rolling after GBE, the void swelling rate decreased to as low as that of PNC316-AS.</description><identifier>ISSN: 0022-3115</identifier><identifier>EISSN: 1873-4820</identifier><identifier>DOI: 10.1016/j.jnucmat.2011.03.049</identifier><identifier>CODEN: JNUMAM</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Controled nuclear fusion plants ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Fission nuclear power plants ; Fuels ; Installations for energy generation and conversion: thermal and electrical energy ; Nuclear fuels</subject><ispartof>Journal of nuclear materials, 2011-07, Vol.414 (2), p.232-236</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c557t-50e5bb160f3eb7851cbf2caf8e3510eb5b83e07c1f2df597b1b647ab6d2ef1bf3</citedby><cites>FETCH-LOGICAL-c557t-50e5bb160f3eb7851cbf2caf8e3510eb5b83e07c1f2df597b1b647ab6d2ef1bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022311511003321$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23909,23910,25118,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24463085$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sekine, M.</creatorcontrib><creatorcontrib>Sakaguchi, N.</creatorcontrib><creatorcontrib>Endo, M.</creatorcontrib><creatorcontrib>Kinoshita, H.</creatorcontrib><creatorcontrib>Watanabe, S.</creatorcontrib><creatorcontrib>Kokawa, H.</creatorcontrib><creatorcontrib>Yamashita, S.</creatorcontrib><creatorcontrib>Yano, Y.</creatorcontrib><creatorcontrib>Kawai, M.</creatorcontrib><title>Grain boundary engineering of austenitic steel PNC316 for use in nuclear reactors</title><title>Journal of nuclear materials</title><description>Austenitic stainless steel PNC316 was subjected to grain boundary engineering (GBE). It was found that the grain boundary engineered PNC316 (PNC316-GBEM) had a coincidence site lattice (CSL) fraction of 86% and that the network of random grain boundaries was perfectly divided by the CSL boundaries. The thermal stability and the void swelling behavior of PNC316-GBEM were investigated by means of SEM and TEM analyses. After thermal aging at 973 K for 100 h, structural changes were observed neither in the grain boundary networks of PNC316-GBEM nor in another sample of PNC316-GBEM subjected to 20% additional cold rolling, PNC316-GBEM20%CW. PNC316-GBEM showed a higher void swelling rate than as-received PNC316 (PNC316-AS). However, with additional 20% cold rolling after GBE, the void swelling rate decreased to as low as that of PNC316-AS.</description><subject>Applied sciences</subject><subject>Controled nuclear fusion plants</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Fission nuclear power plants</subject><subject>Fuels</subject><subject>Installations for energy generation and conversion: thermal and electrical energy</subject><subject>Nuclear fuels</subject><issn>0022-3115</issn><issn>1873-4820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKs_QchFPO062Wz24yRStArFD9BzSLKTkrLN1mRX8N8bafHqaebwvPMyDyGXDHIGrLrZ5Bs_ma0a8wIYy4HnULZHZMaammdlU8AxmQEURcYZE6fkLMYNAIgWxIy8LYNynuph8p0K3xT92nnE4PyaDpaqKY7o3egMTQv29PV5wVlF7RDoFJGmaKruUQUaUJlxCPGcnFjVR7w4zDn5eLh_Xzxmq5fl0-JulRkh6jETgEJrVoHlqOtGMKNtYZRtkAsGqIVuOEJtmC06K9paM12VtdJVV6Bl2vI5ud7f3YXhc8I4yq2LBvteeRymKNukpml5VSVS7EkThhgDWrkLbpu-lQzkr0G5kQeD8tegBC6TwZS7OjSoaFRvg_LGxb9wUZYVh0Yk7nbPYXr3y2GQ0Tj0BjsX0IyyG9w_TT8KBopA</recordid><startdate>20110715</startdate><enddate>20110715</enddate><creator>Sekine, M.</creator><creator>Sakaguchi, N.</creator><creator>Endo, M.</creator><creator>Kinoshita, H.</creator><creator>Watanabe, S.</creator><creator>Kokawa, H.</creator><creator>Yamashita, S.</creator><creator>Yano, Y.</creator><creator>Kawai, M.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>20110715</creationdate><title>Grain boundary engineering of austenitic steel PNC316 for use in nuclear reactors</title><author>Sekine, M. ; Sakaguchi, N. ; Endo, M. ; Kinoshita, H. ; Watanabe, S. ; Kokawa, H. ; Yamashita, S. ; Yano, Y. ; Kawai, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c557t-50e5bb160f3eb7851cbf2caf8e3510eb5b83e07c1f2df597b1b647ab6d2ef1bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Controled nuclear fusion plants</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Fission nuclear power plants</topic><topic>Fuels</topic><topic>Installations for energy generation and conversion: thermal and electrical energy</topic><topic>Nuclear fuels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sekine, M.</creatorcontrib><creatorcontrib>Sakaguchi, N.</creatorcontrib><creatorcontrib>Endo, M.</creatorcontrib><creatorcontrib>Kinoshita, H.</creatorcontrib><creatorcontrib>Watanabe, S.</creatorcontrib><creatorcontrib>Kokawa, H.</creatorcontrib><creatorcontrib>Yamashita, S.</creatorcontrib><creatorcontrib>Yano, Y.</creatorcontrib><creatorcontrib>Kawai, M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Journal of nuclear materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sekine, M.</au><au>Sakaguchi, N.</au><au>Endo, M.</au><au>Kinoshita, H.</au><au>Watanabe, S.</au><au>Kokawa, H.</au><au>Yamashita, S.</au><au>Yano, Y.</au><au>Kawai, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Grain boundary engineering of austenitic steel PNC316 for use in nuclear reactors</atitle><jtitle>Journal of nuclear materials</jtitle><date>2011-07-15</date><risdate>2011</risdate><volume>414</volume><issue>2</issue><spage>232</spage><epage>236</epage><pages>232-236</pages><issn>0022-3115</issn><eissn>1873-4820</eissn><coden>JNUMAM</coden><abstract>Austenitic stainless steel PNC316 was subjected to grain boundary engineering (GBE). It was found that the grain boundary engineered PNC316 (PNC316-GBEM) had a coincidence site lattice (CSL) fraction of 86% and that the network of random grain boundaries was perfectly divided by the CSL boundaries. The thermal stability and the void swelling behavior of PNC316-GBEM were investigated by means of SEM and TEM analyses. After thermal aging at 973 K for 100 h, structural changes were observed neither in the grain boundary networks of PNC316-GBEM nor in another sample of PNC316-GBEM subjected to 20% additional cold rolling, PNC316-GBEM20%CW. PNC316-GBEM showed a higher void swelling rate than as-received PNC316 (PNC316-AS). However, with additional 20% cold rolling after GBE, the void swelling rate decreased to as low as that of PNC316-AS.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnucmat.2011.03.049</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3115
ispartof Journal of nuclear materials, 2011-07, Vol.414 (2), p.232-236
issn 0022-3115
1873-4820
language eng
recordid cdi_proquest_miscellaneous_901689366
source Elsevier ScienceDirect Journals
subjects Applied sciences
Controled nuclear fusion plants
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Fission nuclear power plants
Fuels
Installations for energy generation and conversion: thermal and electrical energy
Nuclear fuels
title Grain boundary engineering of austenitic steel PNC316 for use in nuclear reactors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T21%3A18%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Grain%20boundary%20engineering%20of%20austenitic%20steel%20PNC316%20for%20use%20in%20nuclear%20reactors&rft.jtitle=Journal%20of%20nuclear%20materials&rft.au=Sekine,%20M.&rft.date=2011-07-15&rft.volume=414&rft.issue=2&rft.spage=232&rft.epage=236&rft.pages=232-236&rft.issn=0022-3115&rft.eissn=1873-4820&rft.coden=JNUMAM&rft_id=info:doi/10.1016/j.jnucmat.2011.03.049&rft_dat=%3Cproquest_cross%3E901689366%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=901689366&rft_id=info:pmid/&rft_els_id=S0022311511003321&rfr_iscdi=true