An efficient and general numerical method to compute steady uniform vortices
Steady uniform vortices are widely used to represent high Reynolds number flows, yet their efficient computation still presents some challenges. Existing Newton iteration methods become inefficient as the vortices develop fine-scale features; in addition, these methods cannot, in general, find solut...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2011-07, Vol.230 (17), p.6495-6511 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6511 |
---|---|
container_issue | 17 |
container_start_page | 6495 |
container_title | Journal of computational physics |
container_volume | 230 |
creator | Luzzatto-Fegiz, Paolo Williamson, Charles H.K. |
description | Steady uniform vortices are widely used to represent high Reynolds number flows, yet their efficient computation still presents some challenges. Existing Newton iteration methods become inefficient as the vortices develop fine-scale features; in addition, these methods cannot, in general, find solutions with specified Casimir invariants. On the other hand, available relaxation approaches are computationally inexpensive, but can fail to converge to a solution. In this paper, we overcome these limitations by introducing a new discretization, based on an inverse-velocity map, which radically increases the efficiency of Newton iteration methods. In addition, we introduce a procedure to prescribe Casimirs and remove the degeneracies in the steady vorticity equation, thus ensuring convergence for general vortex configurations. We illustrate our methodology by considering several unbounded flows involving one or two vortices. Our method enables the computation, for the first time, of steady vortices that do not exhibit any geometric symmetry. In addition, we discover that, as the limiting vortex state for each flow is approached, each family of solutions traces a clockwise spiral in a bifurcation plot consisting of a velocity-impulse diagram. By the recently introduced “IVI diagram” stability approach [Phys. Rev. Lett. 104 (2010) 044504], each turn of this spiral is associated with a loss of stability for the steady flows. Such spiral structure is suggested to be a universal feature of steady, uniform-vorticity flows. |
doi_str_mv | 10.1016/j.jcp.2011.04.035 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901685677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002199911100283X</els_id><sourcerecordid>901685677</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-52a289d1bf0fd50c9e2f1b9a713b74366aa0ad9092d4268424ac21d7c380fb9e3</originalsourceid><addsrcrecordid>eNp9kDtPAzEQhC0EEiHwA-jcIKo71r6nRRUhXlIkGqgtx16Do9w52L5I_HscJaKk2i1mZmc_Qq4ZlAxYe7cu13pbcmCshLqEqjkhMwYCCt6x9pTMADgrhBDsnFzEuAaAvqn7GVkuRorWOu1wTFSNhn7iiEFt6DgNGJzO24DpyxuaPNV-2E4JaUyozA-dRmd9GOjOh-Q0xktyZtUm4tVxzsnH0-P7w0uxfHt-fVgsC101IhUNV7wXhq0sWNOAFsgtWwnVsWrV1VXbKgXKCBDc1Lzta14rzZnpdNWDXQms5uT2kLsN_nvCmOTgosbNRo3opyhFJtI3bddlJTsodfAxBrRyG9ygwo9kIPfg5FpmcHIPTkItM7jsuTmmq5jft0GN2sU_I88Nqzp3nZP7gw7zqzuHQcY9RY3GBdRJGu_-ufIL0F2DHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901685677</pqid></control><display><type>article</type><title>An efficient and general numerical method to compute steady uniform vortices</title><source>Elsevier ScienceDirect Journals</source><creator>Luzzatto-Fegiz, Paolo ; Williamson, Charles H.K.</creator><creatorcontrib>Luzzatto-Fegiz, Paolo ; Williamson, Charles H.K.</creatorcontrib><description>Steady uniform vortices are widely used to represent high Reynolds number flows, yet their efficient computation still presents some challenges. Existing Newton iteration methods become inefficient as the vortices develop fine-scale features; in addition, these methods cannot, in general, find solutions with specified Casimir invariants. On the other hand, available relaxation approaches are computationally inexpensive, but can fail to converge to a solution. In this paper, we overcome these limitations by introducing a new discretization, based on an inverse-velocity map, which radically increases the efficiency of Newton iteration methods. In addition, we introduce a procedure to prescribe Casimirs and remove the degeneracies in the steady vorticity equation, thus ensuring convergence for general vortex configurations. We illustrate our methodology by considering several unbounded flows involving one or two vortices. Our method enables the computation, for the first time, of steady vortices that do not exhibit any geometric symmetry. In addition, we discover that, as the limiting vortex state for each flow is approached, each family of solutions traces a clockwise spiral in a bifurcation plot consisting of a velocity-impulse diagram. By the recently introduced “IVI diagram” stability approach [Phys. Rev. Lett. 104 (2010) 044504], each turn of this spiral is associated with a loss of stability for the steady flows. Such spiral structure is suggested to be a universal feature of steady, uniform-vorticity flows.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2011.04.035</identifier><identifier>CODEN: JCTPAH</identifier><language>eng</language><publisher>Kidlington: Elsevier Inc</publisher><subject>Computation ; Computational efficiency ; Computational fluid dynamics ; Computational techniques ; Contour dynamics ; Exact sciences and technology ; Fluid flow ; Iterative methods ; Mathematical methods in physics ; Mathematical models ; Physics ; Spirals ; Steady vortex flows ; Vortex stability ; Vortices</subject><ispartof>Journal of computational physics, 2011-07, Vol.230 (17), p.6495-6511</ispartof><rights>2011 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-52a289d1bf0fd50c9e2f1b9a713b74366aa0ad9092d4268424ac21d7c380fb9e3</citedby><cites>FETCH-LOGICAL-c359t-52a289d1bf0fd50c9e2f1b9a713b74366aa0ad9092d4268424ac21d7c380fb9e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S002199911100283X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27902,27903,65308</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24363471$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Luzzatto-Fegiz, Paolo</creatorcontrib><creatorcontrib>Williamson, Charles H.K.</creatorcontrib><title>An efficient and general numerical method to compute steady uniform vortices</title><title>Journal of computational physics</title><description>Steady uniform vortices are widely used to represent high Reynolds number flows, yet their efficient computation still presents some challenges. Existing Newton iteration methods become inefficient as the vortices develop fine-scale features; in addition, these methods cannot, in general, find solutions with specified Casimir invariants. On the other hand, available relaxation approaches are computationally inexpensive, but can fail to converge to a solution. In this paper, we overcome these limitations by introducing a new discretization, based on an inverse-velocity map, which radically increases the efficiency of Newton iteration methods. In addition, we introduce a procedure to prescribe Casimirs and remove the degeneracies in the steady vorticity equation, thus ensuring convergence for general vortex configurations. We illustrate our methodology by considering several unbounded flows involving one or two vortices. Our method enables the computation, for the first time, of steady vortices that do not exhibit any geometric symmetry. In addition, we discover that, as the limiting vortex state for each flow is approached, each family of solutions traces a clockwise spiral in a bifurcation plot consisting of a velocity-impulse diagram. By the recently introduced “IVI diagram” stability approach [Phys. Rev. Lett. 104 (2010) 044504], each turn of this spiral is associated with a loss of stability for the steady flows. Such spiral structure is suggested to be a universal feature of steady, uniform-vorticity flows.</description><subject>Computation</subject><subject>Computational efficiency</subject><subject>Computational fluid dynamics</subject><subject>Computational techniques</subject><subject>Contour dynamics</subject><subject>Exact sciences and technology</subject><subject>Fluid flow</subject><subject>Iterative methods</subject><subject>Mathematical methods in physics</subject><subject>Mathematical models</subject><subject>Physics</subject><subject>Spirals</subject><subject>Steady vortex flows</subject><subject>Vortex stability</subject><subject>Vortices</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPAzEQhC0EEiHwA-jcIKo71r6nRRUhXlIkGqgtx16Do9w52L5I_HscJaKk2i1mZmc_Qq4ZlAxYe7cu13pbcmCshLqEqjkhMwYCCt6x9pTMADgrhBDsnFzEuAaAvqn7GVkuRorWOu1wTFSNhn7iiEFt6DgNGJzO24DpyxuaPNV-2E4JaUyozA-dRmd9GOjOh-Q0xktyZtUm4tVxzsnH0-P7w0uxfHt-fVgsC101IhUNV7wXhq0sWNOAFsgtWwnVsWrV1VXbKgXKCBDc1Lzta14rzZnpdNWDXQms5uT2kLsN_nvCmOTgosbNRo3opyhFJtI3bddlJTsodfAxBrRyG9ygwo9kIPfg5FpmcHIPTkItM7jsuTmmq5jft0GN2sU_I88Nqzp3nZP7gw7zqzuHQcY9RY3GBdRJGu_-ufIL0F2DHg</recordid><startdate>20110720</startdate><enddate>20110720</enddate><creator>Luzzatto-Fegiz, Paolo</creator><creator>Williamson, Charles H.K.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110720</creationdate><title>An efficient and general numerical method to compute steady uniform vortices</title><author>Luzzatto-Fegiz, Paolo ; Williamson, Charles H.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-52a289d1bf0fd50c9e2f1b9a713b74366aa0ad9092d4268424ac21d7c380fb9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Computation</topic><topic>Computational efficiency</topic><topic>Computational fluid dynamics</topic><topic>Computational techniques</topic><topic>Contour dynamics</topic><topic>Exact sciences and technology</topic><topic>Fluid flow</topic><topic>Iterative methods</topic><topic>Mathematical methods in physics</topic><topic>Mathematical models</topic><topic>Physics</topic><topic>Spirals</topic><topic>Steady vortex flows</topic><topic>Vortex stability</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luzzatto-Fegiz, Paolo</creatorcontrib><creatorcontrib>Williamson, Charles H.K.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luzzatto-Fegiz, Paolo</au><au>Williamson, Charles H.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An efficient and general numerical method to compute steady uniform vortices</atitle><jtitle>Journal of computational physics</jtitle><date>2011-07-20</date><risdate>2011</risdate><volume>230</volume><issue>17</issue><spage>6495</spage><epage>6511</epage><pages>6495-6511</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><coden>JCTPAH</coden><abstract>Steady uniform vortices are widely used to represent high Reynolds number flows, yet their efficient computation still presents some challenges. Existing Newton iteration methods become inefficient as the vortices develop fine-scale features; in addition, these methods cannot, in general, find solutions with specified Casimir invariants. On the other hand, available relaxation approaches are computationally inexpensive, but can fail to converge to a solution. In this paper, we overcome these limitations by introducing a new discretization, based on an inverse-velocity map, which radically increases the efficiency of Newton iteration methods. In addition, we introduce a procedure to prescribe Casimirs and remove the degeneracies in the steady vorticity equation, thus ensuring convergence for general vortex configurations. We illustrate our methodology by considering several unbounded flows involving one or two vortices. Our method enables the computation, for the first time, of steady vortices that do not exhibit any geometric symmetry. In addition, we discover that, as the limiting vortex state for each flow is approached, each family of solutions traces a clockwise spiral in a bifurcation plot consisting of a velocity-impulse diagram. By the recently introduced “IVI diagram” stability approach [Phys. Rev. Lett. 104 (2010) 044504], each turn of this spiral is associated with a loss of stability for the steady flows. Such spiral structure is suggested to be a universal feature of steady, uniform-vorticity flows.</abstract><cop>Kidlington</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2011.04.035</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2011-07, Vol.230 (17), p.6495-6511 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_proquest_miscellaneous_901685677 |
source | Elsevier ScienceDirect Journals |
subjects | Computation Computational efficiency Computational fluid dynamics Computational techniques Contour dynamics Exact sciences and technology Fluid flow Iterative methods Mathematical methods in physics Mathematical models Physics Spirals Steady vortex flows Vortex stability Vortices |
title | An efficient and general numerical method to compute steady uniform vortices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T09%3A11%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20efficient%20and%20general%20numerical%20method%20to%20compute%20steady%20uniform%20vortices&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Luzzatto-Fegiz,%20Paolo&rft.date=2011-07-20&rft.volume=230&rft.issue=17&rft.spage=6495&rft.epage=6511&rft.pages=6495-6511&rft.issn=0021-9991&rft.eissn=1090-2716&rft.coden=JCTPAH&rft_id=info:doi/10.1016/j.jcp.2011.04.035&rft_dat=%3Cproquest_cross%3E901685677%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=901685677&rft_id=info:pmid/&rft_els_id=S002199911100283X&rfr_iscdi=true |