An efficient and general numerical method to compute steady uniform vortices

Steady uniform vortices are widely used to represent high Reynolds number flows, yet their efficient computation still presents some challenges. Existing Newton iteration methods become inefficient as the vortices develop fine-scale features; in addition, these methods cannot, in general, find solut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2011-07, Vol.230 (17), p.6495-6511
Hauptverfasser: Luzzatto-Fegiz, Paolo, Williamson, Charles H.K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6511
container_issue 17
container_start_page 6495
container_title Journal of computational physics
container_volume 230
creator Luzzatto-Fegiz, Paolo
Williamson, Charles H.K.
description Steady uniform vortices are widely used to represent high Reynolds number flows, yet their efficient computation still presents some challenges. Existing Newton iteration methods become inefficient as the vortices develop fine-scale features; in addition, these methods cannot, in general, find solutions with specified Casimir invariants. On the other hand, available relaxation approaches are computationally inexpensive, but can fail to converge to a solution. In this paper, we overcome these limitations by introducing a new discretization, based on an inverse-velocity map, which radically increases the efficiency of Newton iteration methods. In addition, we introduce a procedure to prescribe Casimirs and remove the degeneracies in the steady vorticity equation, thus ensuring convergence for general vortex configurations. We illustrate our methodology by considering several unbounded flows involving one or two vortices. Our method enables the computation, for the first time, of steady vortices that do not exhibit any geometric symmetry. In addition, we discover that, as the limiting vortex state for each flow is approached, each family of solutions traces a clockwise spiral in a bifurcation plot consisting of a velocity-impulse diagram. By the recently introduced “IVI diagram” stability approach [Phys. Rev. Lett. 104 (2010) 044504], each turn of this spiral is associated with a loss of stability for the steady flows. Such spiral structure is suggested to be a universal feature of steady, uniform-vorticity flows.
doi_str_mv 10.1016/j.jcp.2011.04.035
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901685677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002199911100283X</els_id><sourcerecordid>901685677</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-52a289d1bf0fd50c9e2f1b9a713b74366aa0ad9092d4268424ac21d7c380fb9e3</originalsourceid><addsrcrecordid>eNp9kDtPAzEQhC0EEiHwA-jcIKo71r6nRRUhXlIkGqgtx16Do9w52L5I_HscJaKk2i1mZmc_Qq4ZlAxYe7cu13pbcmCshLqEqjkhMwYCCt6x9pTMADgrhBDsnFzEuAaAvqn7GVkuRorWOu1wTFSNhn7iiEFt6DgNGJzO24DpyxuaPNV-2E4JaUyozA-dRmd9GOjOh-Q0xktyZtUm4tVxzsnH0-P7w0uxfHt-fVgsC101IhUNV7wXhq0sWNOAFsgtWwnVsWrV1VXbKgXKCBDc1Lzta14rzZnpdNWDXQms5uT2kLsN_nvCmOTgosbNRo3opyhFJtI3bddlJTsodfAxBrRyG9ygwo9kIPfg5FpmcHIPTkItM7jsuTmmq5jft0GN2sU_I88Nqzp3nZP7gw7zqzuHQcY9RY3GBdRJGu_-ufIL0F2DHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901685677</pqid></control><display><type>article</type><title>An efficient and general numerical method to compute steady uniform vortices</title><source>Elsevier ScienceDirect Journals</source><creator>Luzzatto-Fegiz, Paolo ; Williamson, Charles H.K.</creator><creatorcontrib>Luzzatto-Fegiz, Paolo ; Williamson, Charles H.K.</creatorcontrib><description>Steady uniform vortices are widely used to represent high Reynolds number flows, yet their efficient computation still presents some challenges. Existing Newton iteration methods become inefficient as the vortices develop fine-scale features; in addition, these methods cannot, in general, find solutions with specified Casimir invariants. On the other hand, available relaxation approaches are computationally inexpensive, but can fail to converge to a solution. In this paper, we overcome these limitations by introducing a new discretization, based on an inverse-velocity map, which radically increases the efficiency of Newton iteration methods. In addition, we introduce a procedure to prescribe Casimirs and remove the degeneracies in the steady vorticity equation, thus ensuring convergence for general vortex configurations. We illustrate our methodology by considering several unbounded flows involving one or two vortices. Our method enables the computation, for the first time, of steady vortices that do not exhibit any geometric symmetry. In addition, we discover that, as the limiting vortex state for each flow is approached, each family of solutions traces a clockwise spiral in a bifurcation plot consisting of a velocity-impulse diagram. By the recently introduced “IVI diagram” stability approach [Phys. Rev. Lett. 104 (2010) 044504], each turn of this spiral is associated with a loss of stability for the steady flows. Such spiral structure is suggested to be a universal feature of steady, uniform-vorticity flows.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2011.04.035</identifier><identifier>CODEN: JCTPAH</identifier><language>eng</language><publisher>Kidlington: Elsevier Inc</publisher><subject>Computation ; Computational efficiency ; Computational fluid dynamics ; Computational techniques ; Contour dynamics ; Exact sciences and technology ; Fluid flow ; Iterative methods ; Mathematical methods in physics ; Mathematical models ; Physics ; Spirals ; Steady vortex flows ; Vortex stability ; Vortices</subject><ispartof>Journal of computational physics, 2011-07, Vol.230 (17), p.6495-6511</ispartof><rights>2011 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-52a289d1bf0fd50c9e2f1b9a713b74366aa0ad9092d4268424ac21d7c380fb9e3</citedby><cites>FETCH-LOGICAL-c359t-52a289d1bf0fd50c9e2f1b9a713b74366aa0ad9092d4268424ac21d7c380fb9e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S002199911100283X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27902,27903,65308</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24363471$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Luzzatto-Fegiz, Paolo</creatorcontrib><creatorcontrib>Williamson, Charles H.K.</creatorcontrib><title>An efficient and general numerical method to compute steady uniform vortices</title><title>Journal of computational physics</title><description>Steady uniform vortices are widely used to represent high Reynolds number flows, yet their efficient computation still presents some challenges. Existing Newton iteration methods become inefficient as the vortices develop fine-scale features; in addition, these methods cannot, in general, find solutions with specified Casimir invariants. On the other hand, available relaxation approaches are computationally inexpensive, but can fail to converge to a solution. In this paper, we overcome these limitations by introducing a new discretization, based on an inverse-velocity map, which radically increases the efficiency of Newton iteration methods. In addition, we introduce a procedure to prescribe Casimirs and remove the degeneracies in the steady vorticity equation, thus ensuring convergence for general vortex configurations. We illustrate our methodology by considering several unbounded flows involving one or two vortices. Our method enables the computation, for the first time, of steady vortices that do not exhibit any geometric symmetry. In addition, we discover that, as the limiting vortex state for each flow is approached, each family of solutions traces a clockwise spiral in a bifurcation plot consisting of a velocity-impulse diagram. By the recently introduced “IVI diagram” stability approach [Phys. Rev. Lett. 104 (2010) 044504], each turn of this spiral is associated with a loss of stability for the steady flows. Such spiral structure is suggested to be a universal feature of steady, uniform-vorticity flows.</description><subject>Computation</subject><subject>Computational efficiency</subject><subject>Computational fluid dynamics</subject><subject>Computational techniques</subject><subject>Contour dynamics</subject><subject>Exact sciences and technology</subject><subject>Fluid flow</subject><subject>Iterative methods</subject><subject>Mathematical methods in physics</subject><subject>Mathematical models</subject><subject>Physics</subject><subject>Spirals</subject><subject>Steady vortex flows</subject><subject>Vortex stability</subject><subject>Vortices</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPAzEQhC0EEiHwA-jcIKo71r6nRRUhXlIkGqgtx16Do9w52L5I_HscJaKk2i1mZmc_Qq4ZlAxYe7cu13pbcmCshLqEqjkhMwYCCt6x9pTMADgrhBDsnFzEuAaAvqn7GVkuRorWOu1wTFSNhn7iiEFt6DgNGJzO24DpyxuaPNV-2E4JaUyozA-dRmd9GOjOh-Q0xktyZtUm4tVxzsnH0-P7w0uxfHt-fVgsC101IhUNV7wXhq0sWNOAFsgtWwnVsWrV1VXbKgXKCBDc1Lzta14rzZnpdNWDXQms5uT2kLsN_nvCmOTgosbNRo3opyhFJtI3bddlJTsodfAxBrRyG9ygwo9kIPfg5FpmcHIPTkItM7jsuTmmq5jft0GN2sU_I88Nqzp3nZP7gw7zqzuHQcY9RY3GBdRJGu_-ufIL0F2DHg</recordid><startdate>20110720</startdate><enddate>20110720</enddate><creator>Luzzatto-Fegiz, Paolo</creator><creator>Williamson, Charles H.K.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110720</creationdate><title>An efficient and general numerical method to compute steady uniform vortices</title><author>Luzzatto-Fegiz, Paolo ; Williamson, Charles H.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-52a289d1bf0fd50c9e2f1b9a713b74366aa0ad9092d4268424ac21d7c380fb9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Computation</topic><topic>Computational efficiency</topic><topic>Computational fluid dynamics</topic><topic>Computational techniques</topic><topic>Contour dynamics</topic><topic>Exact sciences and technology</topic><topic>Fluid flow</topic><topic>Iterative methods</topic><topic>Mathematical methods in physics</topic><topic>Mathematical models</topic><topic>Physics</topic><topic>Spirals</topic><topic>Steady vortex flows</topic><topic>Vortex stability</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luzzatto-Fegiz, Paolo</creatorcontrib><creatorcontrib>Williamson, Charles H.K.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luzzatto-Fegiz, Paolo</au><au>Williamson, Charles H.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An efficient and general numerical method to compute steady uniform vortices</atitle><jtitle>Journal of computational physics</jtitle><date>2011-07-20</date><risdate>2011</risdate><volume>230</volume><issue>17</issue><spage>6495</spage><epage>6511</epage><pages>6495-6511</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><coden>JCTPAH</coden><abstract>Steady uniform vortices are widely used to represent high Reynolds number flows, yet their efficient computation still presents some challenges. Existing Newton iteration methods become inefficient as the vortices develop fine-scale features; in addition, these methods cannot, in general, find solutions with specified Casimir invariants. On the other hand, available relaxation approaches are computationally inexpensive, but can fail to converge to a solution. In this paper, we overcome these limitations by introducing a new discretization, based on an inverse-velocity map, which radically increases the efficiency of Newton iteration methods. In addition, we introduce a procedure to prescribe Casimirs and remove the degeneracies in the steady vorticity equation, thus ensuring convergence for general vortex configurations. We illustrate our methodology by considering several unbounded flows involving one or two vortices. Our method enables the computation, for the first time, of steady vortices that do not exhibit any geometric symmetry. In addition, we discover that, as the limiting vortex state for each flow is approached, each family of solutions traces a clockwise spiral in a bifurcation plot consisting of a velocity-impulse diagram. By the recently introduced “IVI diagram” stability approach [Phys. Rev. Lett. 104 (2010) 044504], each turn of this spiral is associated with a loss of stability for the steady flows. Such spiral structure is suggested to be a universal feature of steady, uniform-vorticity flows.</abstract><cop>Kidlington</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2011.04.035</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2011-07, Vol.230 (17), p.6495-6511
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_miscellaneous_901685677
source Elsevier ScienceDirect Journals
subjects Computation
Computational efficiency
Computational fluid dynamics
Computational techniques
Contour dynamics
Exact sciences and technology
Fluid flow
Iterative methods
Mathematical methods in physics
Mathematical models
Physics
Spirals
Steady vortex flows
Vortex stability
Vortices
title An efficient and general numerical method to compute steady uniform vortices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T09%3A11%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20efficient%20and%20general%20numerical%20method%20to%20compute%20steady%20uniform%20vortices&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Luzzatto-Fegiz,%20Paolo&rft.date=2011-07-20&rft.volume=230&rft.issue=17&rft.spage=6495&rft.epage=6511&rft.pages=6495-6511&rft.issn=0021-9991&rft.eissn=1090-2716&rft.coden=JCTPAH&rft_id=info:doi/10.1016/j.jcp.2011.04.035&rft_dat=%3Cproquest_cross%3E901685677%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=901685677&rft_id=info:pmid/&rft_els_id=S002199911100283X&rfr_iscdi=true