Curvilinear Electronics Formed Using Silicon Membrane Circuits and Elastomeric Transfer Elements

Materials and methods to achieve electronics intimately integrated on the surfaces of substrates with complex, curvilinear shapes are described. The approach exploits silicon membranes in circuit mesh structures that can be deformed in controlled ways using thin, elastomeric films. Experimental and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2009-12, Vol.5 (23), p.2703-2709
Hauptverfasser: Ko, Heung Cho, Shin, Gunchul, Wang, Shuodao, Stoykovich, Mark P., Lee, Jeong Won, Kim, Dong-Hun, Ha, Jeong Sook, Huang, Yonggang, Hwang, Keh-Chih, Rogers, John A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2709
container_issue 23
container_start_page 2703
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 5
creator Ko, Heung Cho
Shin, Gunchul
Wang, Shuodao
Stoykovich, Mark P.
Lee, Jeong Won
Kim, Dong-Hun
Ha, Jeong Sook
Huang, Yonggang
Hwang, Keh-Chih
Rogers, John A.
description Materials and methods to achieve electronics intimately integrated on the surfaces of substrates with complex, curvilinear shapes are described. The approach exploits silicon membranes in circuit mesh structures that can be deformed in controlled ways using thin, elastomeric films. Experimental and theoretical studies of the micromechanics of such curvilinear electronics demonstrate the underlying concepts. Electrical measurements illustrate the high yields that can be obtained. The results represent significant experimental and theoretical advances over recently reported concepts for creating hemispherical photodetectors in electronic eye cameras and for using printable silicon nanoribbons/membranes in flexible electronics. The results might provide practical routes to the integration of high performance electronics with biological tissues and other systems of interest for new applications. Strategies for conformal wrapping of single crystalline silicon electronics onto the surfaces of curvilinear substrates are presented (see image). The approach uses silicon membranes in non‐coplanar mesh layouts with thin, elastomeric transfer elements to accomplish a planar to curvilinear geometry transformation. Detailed experimental studies, together with analytical and finite element modeling of the micromechanics, reveal all of the key aspects of the process.
doi_str_mv 10.1002/smll.200900934
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901683692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>901683692</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4804-3a8c1dc8b4abe0dcc23d01da2fccb47a18dbf525fb78abd842f922085d0e9a723</originalsourceid><addsrcrecordid>eNqFkEtLAzEURoMoPqpblzI7V1PzmiSz1GJVbHVhRXETM0lGovPQZMbHvze1pboTLuRCzne4fADsIzhEEOKjUFfVEEOYxyF0DWwjhkjKBM7XVzuCW2AnhGcICcKUb4ItlAvGKGfb4HHU-3dXucYqn5xWVne-bZwOybj1tTXJbXDNU3ITCd02ydTWhVeNTUbO6951IVGNiTEVura23ulkFr9DaX9ctW26sAs2SlUFu7d8B-B2fDobnaeT67OL0fEk1VRAmhIlNDJaFFQVFhqtMTEQGYVLrQvKFRKmKDOclQUXqjCC4jLHGIrMQJsrjskAHC68r759623oZO2CtlUVz237IHOImCAs_5_khCLOSYYiOVyQ2rcheFvKV-9q5b8kgnJev5zXL1f1x8DBUt0Xsb1ffNl3BPIF8OEq-_WPTt5MJ5O_8nSRdaGzn6us8i-SccIzeXd1Ji-n7GQ8gw_ynnwDTseiyg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>734177351</pqid></control><display><type>article</type><title>Curvilinear Electronics Formed Using Silicon Membrane Circuits and Elastomeric Transfer Elements</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><creator>Ko, Heung Cho ; Shin, Gunchul ; Wang, Shuodao ; Stoykovich, Mark P. ; Lee, Jeong Won ; Kim, Dong-Hun ; Ha, Jeong Sook ; Huang, Yonggang ; Hwang, Keh-Chih ; Rogers, John A.</creator><creatorcontrib>Ko, Heung Cho ; Shin, Gunchul ; Wang, Shuodao ; Stoykovich, Mark P. ; Lee, Jeong Won ; Kim, Dong-Hun ; Ha, Jeong Sook ; Huang, Yonggang ; Hwang, Keh-Chih ; Rogers, John A.</creatorcontrib><description>Materials and methods to achieve electronics intimately integrated on the surfaces of substrates with complex, curvilinear shapes are described. The approach exploits silicon membranes in circuit mesh structures that can be deformed in controlled ways using thin, elastomeric films. Experimental and theoretical studies of the micromechanics of such curvilinear electronics demonstrate the underlying concepts. Electrical measurements illustrate the high yields that can be obtained. The results represent significant experimental and theoretical advances over recently reported concepts for creating hemispherical photodetectors in electronic eye cameras and for using printable silicon nanoribbons/membranes in flexible electronics. The results might provide practical routes to the integration of high performance electronics with biological tissues and other systems of interest for new applications. Strategies for conformal wrapping of single crystalline silicon electronics onto the surfaces of curvilinear substrates are presented (see image). The approach uses silicon membranes in non‐coplanar mesh layouts with thin, elastomeric transfer elements to accomplish a planar to curvilinear geometry transformation. Detailed experimental studies, together with analytical and finite element modeling of the micromechanics, reveal all of the key aspects of the process.</description><identifier>ISSN: 1613-6810</identifier><identifier>ISSN: 1613-6829</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.200900934</identifier><identifier>PMID: 19866476</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Circuits ; conformal wrapping ; curvilinear electronics ; elastomeric transfer ; Elastomers ; Electronics ; Membranes ; micromechanics ; Microscopy, Electron, Scanning ; Nanocomposites ; Nanomaterials ; Nanostructure ; Nanostructures - chemistry ; Nanostructures - ultrastructure ; Nanotechnology ; Optical Devices ; Quantum Dots ; Silicon ; Silicon - chemistry ; silicon membranes ; Surface Properties</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2009-12, Vol.5 (23), p.2703-2709</ispartof><rights>Copyright © 2009 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4804-3a8c1dc8b4abe0dcc23d01da2fccb47a18dbf525fb78abd842f922085d0e9a723</citedby><cites>FETCH-LOGICAL-c4804-3a8c1dc8b4abe0dcc23d01da2fccb47a18dbf525fb78abd842f922085d0e9a723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.200900934$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.200900934$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19866476$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ko, Heung Cho</creatorcontrib><creatorcontrib>Shin, Gunchul</creatorcontrib><creatorcontrib>Wang, Shuodao</creatorcontrib><creatorcontrib>Stoykovich, Mark P.</creatorcontrib><creatorcontrib>Lee, Jeong Won</creatorcontrib><creatorcontrib>Kim, Dong-Hun</creatorcontrib><creatorcontrib>Ha, Jeong Sook</creatorcontrib><creatorcontrib>Huang, Yonggang</creatorcontrib><creatorcontrib>Hwang, Keh-Chih</creatorcontrib><creatorcontrib>Rogers, John A.</creatorcontrib><title>Curvilinear Electronics Formed Using Silicon Membrane Circuits and Elastomeric Transfer Elements</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Materials and methods to achieve electronics intimately integrated on the surfaces of substrates with complex, curvilinear shapes are described. The approach exploits silicon membranes in circuit mesh structures that can be deformed in controlled ways using thin, elastomeric films. Experimental and theoretical studies of the micromechanics of such curvilinear electronics demonstrate the underlying concepts. Electrical measurements illustrate the high yields that can be obtained. The results represent significant experimental and theoretical advances over recently reported concepts for creating hemispherical photodetectors in electronic eye cameras and for using printable silicon nanoribbons/membranes in flexible electronics. The results might provide practical routes to the integration of high performance electronics with biological tissues and other systems of interest for new applications. Strategies for conformal wrapping of single crystalline silicon electronics onto the surfaces of curvilinear substrates are presented (see image). The approach uses silicon membranes in non‐coplanar mesh layouts with thin, elastomeric transfer elements to accomplish a planar to curvilinear geometry transformation. Detailed experimental studies, together with analytical and finite element modeling of the micromechanics, reveal all of the key aspects of the process.</description><subject>Circuits</subject><subject>conformal wrapping</subject><subject>curvilinear electronics</subject><subject>elastomeric transfer</subject><subject>Elastomers</subject><subject>Electronics</subject><subject>Membranes</subject><subject>micromechanics</subject><subject>Microscopy, Electron, Scanning</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - ultrastructure</subject><subject>Nanotechnology</subject><subject>Optical Devices</subject><subject>Quantum Dots</subject><subject>Silicon</subject><subject>Silicon - chemistry</subject><subject>silicon membranes</subject><subject>Surface Properties</subject><issn>1613-6810</issn><issn>1613-6829</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkEtLAzEURoMoPqpblzI7V1PzmiSz1GJVbHVhRXETM0lGovPQZMbHvze1pboTLuRCzne4fADsIzhEEOKjUFfVEEOYxyF0DWwjhkjKBM7XVzuCW2AnhGcICcKUb4ItlAvGKGfb4HHU-3dXucYqn5xWVne-bZwOybj1tTXJbXDNU3ITCd02ydTWhVeNTUbO6951IVGNiTEVura23ulkFr9DaX9ctW26sAs2SlUFu7d8B-B2fDobnaeT67OL0fEk1VRAmhIlNDJaFFQVFhqtMTEQGYVLrQvKFRKmKDOclQUXqjCC4jLHGIrMQJsrjskAHC68r759623oZO2CtlUVz237IHOImCAs_5_khCLOSYYiOVyQ2rcheFvKV-9q5b8kgnJev5zXL1f1x8DBUt0Xsb1ffNl3BPIF8OEq-_WPTt5MJ5O_8nSRdaGzn6us8i-SccIzeXd1Ji-n7GQ8gw_ynnwDTseiyg</recordid><startdate>20091204</startdate><enddate>20091204</enddate><creator>Ko, Heung Cho</creator><creator>Shin, Gunchul</creator><creator>Wang, Shuodao</creator><creator>Stoykovich, Mark P.</creator><creator>Lee, Jeong Won</creator><creator>Kim, Dong-Hun</creator><creator>Ha, Jeong Sook</creator><creator>Huang, Yonggang</creator><creator>Hwang, Keh-Chih</creator><creator>Rogers, John A.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20091204</creationdate><title>Curvilinear Electronics Formed Using Silicon Membrane Circuits and Elastomeric Transfer Elements</title><author>Ko, Heung Cho ; Shin, Gunchul ; Wang, Shuodao ; Stoykovich, Mark P. ; Lee, Jeong Won ; Kim, Dong-Hun ; Ha, Jeong Sook ; Huang, Yonggang ; Hwang, Keh-Chih ; Rogers, John A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4804-3a8c1dc8b4abe0dcc23d01da2fccb47a18dbf525fb78abd842f922085d0e9a723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Circuits</topic><topic>conformal wrapping</topic><topic>curvilinear electronics</topic><topic>elastomeric transfer</topic><topic>Elastomers</topic><topic>Electronics</topic><topic>Membranes</topic><topic>micromechanics</topic><topic>Microscopy, Electron, Scanning</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - ultrastructure</topic><topic>Nanotechnology</topic><topic>Optical Devices</topic><topic>Quantum Dots</topic><topic>Silicon</topic><topic>Silicon - chemistry</topic><topic>silicon membranes</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ko, Heung Cho</creatorcontrib><creatorcontrib>Shin, Gunchul</creatorcontrib><creatorcontrib>Wang, Shuodao</creatorcontrib><creatorcontrib>Stoykovich, Mark P.</creatorcontrib><creatorcontrib>Lee, Jeong Won</creatorcontrib><creatorcontrib>Kim, Dong-Hun</creatorcontrib><creatorcontrib>Ha, Jeong Sook</creatorcontrib><creatorcontrib>Huang, Yonggang</creatorcontrib><creatorcontrib>Hwang, Keh-Chih</creatorcontrib><creatorcontrib>Rogers, John A.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ko, Heung Cho</au><au>Shin, Gunchul</au><au>Wang, Shuodao</au><au>Stoykovich, Mark P.</au><au>Lee, Jeong Won</au><au>Kim, Dong-Hun</au><au>Ha, Jeong Sook</au><au>Huang, Yonggang</au><au>Hwang, Keh-Chih</au><au>Rogers, John A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Curvilinear Electronics Formed Using Silicon Membrane Circuits and Elastomeric Transfer Elements</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2009-12-04</date><risdate>2009</risdate><volume>5</volume><issue>23</issue><spage>2703</spage><epage>2709</epage><pages>2703-2709</pages><issn>1613-6810</issn><issn>1613-6829</issn><eissn>1613-6829</eissn><abstract>Materials and methods to achieve electronics intimately integrated on the surfaces of substrates with complex, curvilinear shapes are described. The approach exploits silicon membranes in circuit mesh structures that can be deformed in controlled ways using thin, elastomeric films. Experimental and theoretical studies of the micromechanics of such curvilinear electronics demonstrate the underlying concepts. Electrical measurements illustrate the high yields that can be obtained. The results represent significant experimental and theoretical advances over recently reported concepts for creating hemispherical photodetectors in electronic eye cameras and for using printable silicon nanoribbons/membranes in flexible electronics. The results might provide practical routes to the integration of high performance electronics with biological tissues and other systems of interest for new applications. Strategies for conformal wrapping of single crystalline silicon electronics onto the surfaces of curvilinear substrates are presented (see image). The approach uses silicon membranes in non‐coplanar mesh layouts with thin, elastomeric transfer elements to accomplish a planar to curvilinear geometry transformation. Detailed experimental studies, together with analytical and finite element modeling of the micromechanics, reveal all of the key aspects of the process.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>19866476</pmid><doi>10.1002/smll.200900934</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2009-12, Vol.5 (23), p.2703-2709
issn 1613-6810
1613-6829
1613-6829
language eng
recordid cdi_proquest_miscellaneous_901683692
source Wiley Online Library - AutoHoldings Journals; MEDLINE
subjects Circuits
conformal wrapping
curvilinear electronics
elastomeric transfer
Elastomers
Electronics
Membranes
micromechanics
Microscopy, Electron, Scanning
Nanocomposites
Nanomaterials
Nanostructure
Nanostructures - chemistry
Nanostructures - ultrastructure
Nanotechnology
Optical Devices
Quantum Dots
Silicon
Silicon - chemistry
silicon membranes
Surface Properties
title Curvilinear Electronics Formed Using Silicon Membrane Circuits and Elastomeric Transfer Elements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T17%3A06%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Curvilinear%20Electronics%20Formed%20Using%20Silicon%20Membrane%20Circuits%20and%20Elastomeric%20Transfer%20Elements&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Ko,%20Heung%20Cho&rft.date=2009-12-04&rft.volume=5&rft.issue=23&rft.spage=2703&rft.epage=2709&rft.pages=2703-2709&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.200900934&rft_dat=%3Cproquest_cross%3E901683692%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=734177351&rft_id=info:pmid/19866476&rfr_iscdi=true