Curvilinear Electronics Formed Using Silicon Membrane Circuits and Elastomeric Transfer Elements
Materials and methods to achieve electronics intimately integrated on the surfaces of substrates with complex, curvilinear shapes are described. The approach exploits silicon membranes in circuit mesh structures that can be deformed in controlled ways using thin, elastomeric films. Experimental and...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2009-12, Vol.5 (23), p.2703-2709 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2709 |
---|---|
container_issue | 23 |
container_start_page | 2703 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 5 |
creator | Ko, Heung Cho Shin, Gunchul Wang, Shuodao Stoykovich, Mark P. Lee, Jeong Won Kim, Dong-Hun Ha, Jeong Sook Huang, Yonggang Hwang, Keh-Chih Rogers, John A. |
description | Materials and methods to achieve electronics intimately integrated on the surfaces of substrates with complex, curvilinear shapes are described. The approach exploits silicon membranes in circuit mesh structures that can be deformed in controlled ways using thin, elastomeric films. Experimental and theoretical studies of the micromechanics of such curvilinear electronics demonstrate the underlying concepts. Electrical measurements illustrate the high yields that can be obtained. The results represent significant experimental and theoretical advances over recently reported concepts for creating hemispherical photodetectors in electronic eye cameras and for using printable silicon nanoribbons/membranes in flexible electronics. The results might provide practical routes to the integration of high performance electronics with biological tissues and other systems of interest for new applications.
Strategies for conformal wrapping of single crystalline silicon electronics onto the surfaces of curvilinear substrates are presented (see image). The approach uses silicon membranes in non‐coplanar mesh layouts with thin, elastomeric transfer elements to accomplish a planar to curvilinear geometry transformation. Detailed experimental studies, together with analytical and finite element modeling of the micromechanics, reveal all of the key aspects of the process. |
doi_str_mv | 10.1002/smll.200900934 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901683692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>901683692</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4804-3a8c1dc8b4abe0dcc23d01da2fccb47a18dbf525fb78abd842f922085d0e9a723</originalsourceid><addsrcrecordid>eNqFkEtLAzEURoMoPqpblzI7V1PzmiSz1GJVbHVhRXETM0lGovPQZMbHvze1pboTLuRCzne4fADsIzhEEOKjUFfVEEOYxyF0DWwjhkjKBM7XVzuCW2AnhGcICcKUb4ItlAvGKGfb4HHU-3dXucYqn5xWVne-bZwOybj1tTXJbXDNU3ITCd02ydTWhVeNTUbO6951IVGNiTEVura23ulkFr9DaX9ctW26sAs2SlUFu7d8B-B2fDobnaeT67OL0fEk1VRAmhIlNDJaFFQVFhqtMTEQGYVLrQvKFRKmKDOclQUXqjCC4jLHGIrMQJsrjskAHC68r759623oZO2CtlUVz237IHOImCAs_5_khCLOSYYiOVyQ2rcheFvKV-9q5b8kgnJev5zXL1f1x8DBUt0Xsb1ffNl3BPIF8OEq-_WPTt5MJ5O_8nSRdaGzn6us8i-SccIzeXd1Ji-n7GQ8gw_ynnwDTseiyg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>734177351</pqid></control><display><type>article</type><title>Curvilinear Electronics Formed Using Silicon Membrane Circuits and Elastomeric Transfer Elements</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><creator>Ko, Heung Cho ; Shin, Gunchul ; Wang, Shuodao ; Stoykovich, Mark P. ; Lee, Jeong Won ; Kim, Dong-Hun ; Ha, Jeong Sook ; Huang, Yonggang ; Hwang, Keh-Chih ; Rogers, John A.</creator><creatorcontrib>Ko, Heung Cho ; Shin, Gunchul ; Wang, Shuodao ; Stoykovich, Mark P. ; Lee, Jeong Won ; Kim, Dong-Hun ; Ha, Jeong Sook ; Huang, Yonggang ; Hwang, Keh-Chih ; Rogers, John A.</creatorcontrib><description>Materials and methods to achieve electronics intimately integrated on the surfaces of substrates with complex, curvilinear shapes are described. The approach exploits silicon membranes in circuit mesh structures that can be deformed in controlled ways using thin, elastomeric films. Experimental and theoretical studies of the micromechanics of such curvilinear electronics demonstrate the underlying concepts. Electrical measurements illustrate the high yields that can be obtained. The results represent significant experimental and theoretical advances over recently reported concepts for creating hemispherical photodetectors in electronic eye cameras and for using printable silicon nanoribbons/membranes in flexible electronics. The results might provide practical routes to the integration of high performance electronics with biological tissues and other systems of interest for new applications.
Strategies for conformal wrapping of single crystalline silicon electronics onto the surfaces of curvilinear substrates are presented (see image). The approach uses silicon membranes in non‐coplanar mesh layouts with thin, elastomeric transfer elements to accomplish a planar to curvilinear geometry transformation. Detailed experimental studies, together with analytical and finite element modeling of the micromechanics, reveal all of the key aspects of the process.</description><identifier>ISSN: 1613-6810</identifier><identifier>ISSN: 1613-6829</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.200900934</identifier><identifier>PMID: 19866476</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Circuits ; conformal wrapping ; curvilinear electronics ; elastomeric transfer ; Elastomers ; Electronics ; Membranes ; micromechanics ; Microscopy, Electron, Scanning ; Nanocomposites ; Nanomaterials ; Nanostructure ; Nanostructures - chemistry ; Nanostructures - ultrastructure ; Nanotechnology ; Optical Devices ; Quantum Dots ; Silicon ; Silicon - chemistry ; silicon membranes ; Surface Properties</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2009-12, Vol.5 (23), p.2703-2709</ispartof><rights>Copyright © 2009 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4804-3a8c1dc8b4abe0dcc23d01da2fccb47a18dbf525fb78abd842f922085d0e9a723</citedby><cites>FETCH-LOGICAL-c4804-3a8c1dc8b4abe0dcc23d01da2fccb47a18dbf525fb78abd842f922085d0e9a723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.200900934$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.200900934$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19866476$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ko, Heung Cho</creatorcontrib><creatorcontrib>Shin, Gunchul</creatorcontrib><creatorcontrib>Wang, Shuodao</creatorcontrib><creatorcontrib>Stoykovich, Mark P.</creatorcontrib><creatorcontrib>Lee, Jeong Won</creatorcontrib><creatorcontrib>Kim, Dong-Hun</creatorcontrib><creatorcontrib>Ha, Jeong Sook</creatorcontrib><creatorcontrib>Huang, Yonggang</creatorcontrib><creatorcontrib>Hwang, Keh-Chih</creatorcontrib><creatorcontrib>Rogers, John A.</creatorcontrib><title>Curvilinear Electronics Formed Using Silicon Membrane Circuits and Elastomeric Transfer Elements</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Materials and methods to achieve electronics intimately integrated on the surfaces of substrates with complex, curvilinear shapes are described. The approach exploits silicon membranes in circuit mesh structures that can be deformed in controlled ways using thin, elastomeric films. Experimental and theoretical studies of the micromechanics of such curvilinear electronics demonstrate the underlying concepts. Electrical measurements illustrate the high yields that can be obtained. The results represent significant experimental and theoretical advances over recently reported concepts for creating hemispherical photodetectors in electronic eye cameras and for using printable silicon nanoribbons/membranes in flexible electronics. The results might provide practical routes to the integration of high performance electronics with biological tissues and other systems of interest for new applications.
Strategies for conformal wrapping of single crystalline silicon electronics onto the surfaces of curvilinear substrates are presented (see image). The approach uses silicon membranes in non‐coplanar mesh layouts with thin, elastomeric transfer elements to accomplish a planar to curvilinear geometry transformation. Detailed experimental studies, together with analytical and finite element modeling of the micromechanics, reveal all of the key aspects of the process.</description><subject>Circuits</subject><subject>conformal wrapping</subject><subject>curvilinear electronics</subject><subject>elastomeric transfer</subject><subject>Elastomers</subject><subject>Electronics</subject><subject>Membranes</subject><subject>micromechanics</subject><subject>Microscopy, Electron, Scanning</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - ultrastructure</subject><subject>Nanotechnology</subject><subject>Optical Devices</subject><subject>Quantum Dots</subject><subject>Silicon</subject><subject>Silicon - chemistry</subject><subject>silicon membranes</subject><subject>Surface Properties</subject><issn>1613-6810</issn><issn>1613-6829</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkEtLAzEURoMoPqpblzI7V1PzmiSz1GJVbHVhRXETM0lGovPQZMbHvze1pboTLuRCzne4fADsIzhEEOKjUFfVEEOYxyF0DWwjhkjKBM7XVzuCW2AnhGcICcKUb4ItlAvGKGfb4HHU-3dXucYqn5xWVne-bZwOybj1tTXJbXDNU3ITCd02ydTWhVeNTUbO6951IVGNiTEVura23ulkFr9DaX9ctW26sAs2SlUFu7d8B-B2fDobnaeT67OL0fEk1VRAmhIlNDJaFFQVFhqtMTEQGYVLrQvKFRKmKDOclQUXqjCC4jLHGIrMQJsrjskAHC68r759623oZO2CtlUVz237IHOImCAs_5_khCLOSYYiOVyQ2rcheFvKV-9q5b8kgnJev5zXL1f1x8DBUt0Xsb1ffNl3BPIF8OEq-_WPTt5MJ5O_8nSRdaGzn6us8i-SccIzeXd1Ji-n7GQ8gw_ynnwDTseiyg</recordid><startdate>20091204</startdate><enddate>20091204</enddate><creator>Ko, Heung Cho</creator><creator>Shin, Gunchul</creator><creator>Wang, Shuodao</creator><creator>Stoykovich, Mark P.</creator><creator>Lee, Jeong Won</creator><creator>Kim, Dong-Hun</creator><creator>Ha, Jeong Sook</creator><creator>Huang, Yonggang</creator><creator>Hwang, Keh-Chih</creator><creator>Rogers, John A.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20091204</creationdate><title>Curvilinear Electronics Formed Using Silicon Membrane Circuits and Elastomeric Transfer Elements</title><author>Ko, Heung Cho ; Shin, Gunchul ; Wang, Shuodao ; Stoykovich, Mark P. ; Lee, Jeong Won ; Kim, Dong-Hun ; Ha, Jeong Sook ; Huang, Yonggang ; Hwang, Keh-Chih ; Rogers, John A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4804-3a8c1dc8b4abe0dcc23d01da2fccb47a18dbf525fb78abd842f922085d0e9a723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Circuits</topic><topic>conformal wrapping</topic><topic>curvilinear electronics</topic><topic>elastomeric transfer</topic><topic>Elastomers</topic><topic>Electronics</topic><topic>Membranes</topic><topic>micromechanics</topic><topic>Microscopy, Electron, Scanning</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - ultrastructure</topic><topic>Nanotechnology</topic><topic>Optical Devices</topic><topic>Quantum Dots</topic><topic>Silicon</topic><topic>Silicon - chemistry</topic><topic>silicon membranes</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ko, Heung Cho</creatorcontrib><creatorcontrib>Shin, Gunchul</creatorcontrib><creatorcontrib>Wang, Shuodao</creatorcontrib><creatorcontrib>Stoykovich, Mark P.</creatorcontrib><creatorcontrib>Lee, Jeong Won</creatorcontrib><creatorcontrib>Kim, Dong-Hun</creatorcontrib><creatorcontrib>Ha, Jeong Sook</creatorcontrib><creatorcontrib>Huang, Yonggang</creatorcontrib><creatorcontrib>Hwang, Keh-Chih</creatorcontrib><creatorcontrib>Rogers, John A.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ko, Heung Cho</au><au>Shin, Gunchul</au><au>Wang, Shuodao</au><au>Stoykovich, Mark P.</au><au>Lee, Jeong Won</au><au>Kim, Dong-Hun</au><au>Ha, Jeong Sook</au><au>Huang, Yonggang</au><au>Hwang, Keh-Chih</au><au>Rogers, John A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Curvilinear Electronics Formed Using Silicon Membrane Circuits and Elastomeric Transfer Elements</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2009-12-04</date><risdate>2009</risdate><volume>5</volume><issue>23</issue><spage>2703</spage><epage>2709</epage><pages>2703-2709</pages><issn>1613-6810</issn><issn>1613-6829</issn><eissn>1613-6829</eissn><abstract>Materials and methods to achieve electronics intimately integrated on the surfaces of substrates with complex, curvilinear shapes are described. The approach exploits silicon membranes in circuit mesh structures that can be deformed in controlled ways using thin, elastomeric films. Experimental and theoretical studies of the micromechanics of such curvilinear electronics demonstrate the underlying concepts. Electrical measurements illustrate the high yields that can be obtained. The results represent significant experimental and theoretical advances over recently reported concepts for creating hemispherical photodetectors in electronic eye cameras and for using printable silicon nanoribbons/membranes in flexible electronics. The results might provide practical routes to the integration of high performance electronics with biological tissues and other systems of interest for new applications.
Strategies for conformal wrapping of single crystalline silicon electronics onto the surfaces of curvilinear substrates are presented (see image). The approach uses silicon membranes in non‐coplanar mesh layouts with thin, elastomeric transfer elements to accomplish a planar to curvilinear geometry transformation. Detailed experimental studies, together with analytical and finite element modeling of the micromechanics, reveal all of the key aspects of the process.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>19866476</pmid><doi>10.1002/smll.200900934</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2009-12, Vol.5 (23), p.2703-2709 |
issn | 1613-6810 1613-6829 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_901683692 |
source | Wiley Online Library - AutoHoldings Journals; MEDLINE |
subjects | Circuits conformal wrapping curvilinear electronics elastomeric transfer Elastomers Electronics Membranes micromechanics Microscopy, Electron, Scanning Nanocomposites Nanomaterials Nanostructure Nanostructures - chemistry Nanostructures - ultrastructure Nanotechnology Optical Devices Quantum Dots Silicon Silicon - chemistry silicon membranes Surface Properties |
title | Curvilinear Electronics Formed Using Silicon Membrane Circuits and Elastomeric Transfer Elements |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T17%3A06%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Curvilinear%20Electronics%20Formed%20Using%20Silicon%20Membrane%20Circuits%20and%20Elastomeric%20Transfer%20Elements&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Ko,%20Heung%20Cho&rft.date=2009-12-04&rft.volume=5&rft.issue=23&rft.spage=2703&rft.epage=2709&rft.pages=2703-2709&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.200900934&rft_dat=%3Cproquest_cross%3E901683692%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=734177351&rft_id=info:pmid/19866476&rfr_iscdi=true |