Graphite nanoplatelet pastes vs. carbon black pastes as thermal interface materials

Comparison of graphite nanoplatelet (GNP) and carbon black (CB) pastes as thermal interface materials shows that the optimum filler content for attaining the maximum thermal contact conductance (copper proximate surfaces, roughness 15 μm) are 2.4, 15 and 2.4 vol.% for GNP, CB (Tokai) and CB (Cabot),...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbon (New York) 2009, Vol.47 (1), p.295-305
Hauptverfasser: Lin, Chuangang, Chung, D.D.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 305
container_issue 1
container_start_page 295
container_title Carbon (New York)
container_volume 47
creator Lin, Chuangang
Chung, D.D.L.
description Comparison of graphite nanoplatelet (GNP) and carbon black (CB) pastes as thermal interface materials shows that the optimum filler content for attaining the maximum thermal contact conductance (copper proximate surfaces, roughness 15 μm) are 2.4, 15 and 2.4 vol.% for GNP, CB (Tokai) and CB (Cabot), respectively. Except for CB (Cabot), the optimum filler content is diminished when the roughness is decreased from 15 to 0.009 μm. Comparing the fillers at their respective optimum contents shows that (i) GNP is similarly effective as CB (Tokai) for rough (15 μm) surfaces, but is less effective than CB (Tokai) for smooth (0.009 μm) surfaces, and (ii) GNP is more effective than CB (Cabot) for rough surfaces, but is slightly less effective than CB (Cabot) for smooth surfaces. GNP gives higher thermal conductivity and greater bond line thickness than CB (Tokai or Cabot), whether the comparison is at the same filler content or at the respective optimum filler contents. In spite of the high thermal conductivity, the effectiveness of GNP is limited, due to the high bond line thickness. CB (Tokai) gives higher thermal conductivity than CB (Cabot), thus causing CB (Tokai) to be more effective than CB (Cabot).
doi_str_mv 10.1016/j.carbon.2008.10.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901681730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622308005447</els_id><sourcerecordid>901681730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-d64c5f9b0a049c47a29a7c07a696ae9fd0d745d3a7cfd547c468f7f8b0a6d5023</originalsourceid><addsrcrecordid>eNp9kMFKxDAQhoMouK6-gYde1FNr0qRNcxFk0VUQPKjnMJtOMGu3rUlc8O3NUvW4pyF_vn8GPkLOGS0YZfX1ujDgV0NflJQ2KSooYwdkxhrJc94odkhmNP3kdVnyY3ISwjo9RcPEjLwsPYzvLmLWQz-MHUTsMGYjhIgh24Yim1Znqw7Mx18OIYvv6DfQZa6P6C0YzDap6x104ZQc2TTw7HfOydv93eviIX96Xj4ubp9yI-oq5m0tTGXVigIVyggJpQJpqIRa1YDKtrSVomp5Cm1bCZlajZW2SYW6rWjJ5-Rq2jv64fMLQ9QbFwx2HfQ4fAWtkpuGSU4TebmX5BVXpSrrBIoJNH4IwaPVo3cb8N-aUb1zrdd6EqJ3rndpcp1qF7_7IRjorIfeuPDfLRmVnPEddzNxmLRsHXodjMPeYOs8mqjbwe0_9ANJZJcS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>35392926</pqid></control><display><type>article</type><title>Graphite nanoplatelet pastes vs. carbon black pastes as thermal interface materials</title><source>Elsevier ScienceDirect Journals</source><creator>Lin, Chuangang ; Chung, D.D.L.</creator><creatorcontrib>Lin, Chuangang ; Chung, D.D.L.</creatorcontrib><description>Comparison of graphite nanoplatelet (GNP) and carbon black (CB) pastes as thermal interface materials shows that the optimum filler content for attaining the maximum thermal contact conductance (copper proximate surfaces, roughness 15 μm) are 2.4, 15 and 2.4 vol.% for GNP, CB (Tokai) and CB (Cabot), respectively. Except for CB (Cabot), the optimum filler content is diminished when the roughness is decreased from 15 to 0.009 μm. Comparing the fillers at their respective optimum contents shows that (i) GNP is similarly effective as CB (Tokai) for rough (15 μm) surfaces, but is less effective than CB (Tokai) for smooth (0.009 μm) surfaces, and (ii) GNP is more effective than CB (Cabot) for rough surfaces, but is slightly less effective than CB (Cabot) for smooth surfaces. GNP gives higher thermal conductivity and greater bond line thickness than CB (Tokai or Cabot), whether the comparison is at the same filler content or at the respective optimum filler contents. In spite of the high thermal conductivity, the effectiveness of GNP is limited, due to the high bond line thickness. CB (Tokai) gives higher thermal conductivity than CB (Cabot), thus causing CB (Tokai) to be more effective than CB (Cabot).</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2008.10.011</identifier><identifier>CODEN: CRBNAH</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Fillers ; Fullerenes and related materials; diamonds, graphite ; Heat transfer ; Materials science ; Nanocomposites ; Nanomaterials ; Nanostructure ; Optimization ; Pastes ; Physics ; Specific materials ; Thermal conductivity</subject><ispartof>Carbon (New York), 2009, Vol.47 (1), p.295-305</ispartof><rights>2008 Elsevier Ltd</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-d64c5f9b0a049c47a29a7c07a696ae9fd0d745d3a7cfd547c468f7f8b0a6d5023</citedby><cites>FETCH-LOGICAL-c465t-d64c5f9b0a049c47a29a7c07a696ae9fd0d745d3a7cfd547c468f7f8b0a6d5023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.carbon.2008.10.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,4021,27921,27922,27923,45993</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21073131$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Chuangang</creatorcontrib><creatorcontrib>Chung, D.D.L.</creatorcontrib><title>Graphite nanoplatelet pastes vs. carbon black pastes as thermal interface materials</title><title>Carbon (New York)</title><description>Comparison of graphite nanoplatelet (GNP) and carbon black (CB) pastes as thermal interface materials shows that the optimum filler content for attaining the maximum thermal contact conductance (copper proximate surfaces, roughness 15 μm) are 2.4, 15 and 2.4 vol.% for GNP, CB (Tokai) and CB (Cabot), respectively. Except for CB (Cabot), the optimum filler content is diminished when the roughness is decreased from 15 to 0.009 μm. Comparing the fillers at their respective optimum contents shows that (i) GNP is similarly effective as CB (Tokai) for rough (15 μm) surfaces, but is less effective than CB (Tokai) for smooth (0.009 μm) surfaces, and (ii) GNP is more effective than CB (Cabot) for rough surfaces, but is slightly less effective than CB (Cabot) for smooth surfaces. GNP gives higher thermal conductivity and greater bond line thickness than CB (Tokai or Cabot), whether the comparison is at the same filler content or at the respective optimum filler contents. In spite of the high thermal conductivity, the effectiveness of GNP is limited, due to the high bond line thickness. CB (Tokai) gives higher thermal conductivity than CB (Cabot), thus causing CB (Tokai) to be more effective than CB (Cabot).</description><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Fillers</subject><subject>Fullerenes and related materials; diamonds, graphite</subject><subject>Heat transfer</subject><subject>Materials science</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Optimization</subject><subject>Pastes</subject><subject>Physics</subject><subject>Specific materials</subject><subject>Thermal conductivity</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAQhoMouK6-gYde1FNr0qRNcxFk0VUQPKjnMJtOMGu3rUlc8O3NUvW4pyF_vn8GPkLOGS0YZfX1ujDgV0NflJQ2KSooYwdkxhrJc94odkhmNP3kdVnyY3ISwjo9RcPEjLwsPYzvLmLWQz-MHUTsMGYjhIgh24Yim1Znqw7Mx18OIYvv6DfQZa6P6C0YzDap6x104ZQc2TTw7HfOydv93eviIX96Xj4ubp9yI-oq5m0tTGXVigIVyggJpQJpqIRa1YDKtrSVomp5Cm1bCZlajZW2SYW6rWjJ5-Rq2jv64fMLQ9QbFwx2HfQ4fAWtkpuGSU4TebmX5BVXpSrrBIoJNH4IwaPVo3cb8N-aUb1zrdd6EqJ3rndpcp1qF7_7IRjorIfeuPDfLRmVnPEddzNxmLRsHXodjMPeYOs8mqjbwe0_9ANJZJcS</recordid><startdate>2009</startdate><enddate>2009</enddate><creator>Lin, Chuangang</creator><creator>Chung, D.D.L.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>2009</creationdate><title>Graphite nanoplatelet pastes vs. carbon black pastes as thermal interface materials</title><author>Lin, Chuangang ; Chung, D.D.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-d64c5f9b0a049c47a29a7c07a696ae9fd0d745d3a7cfd547c468f7f8b0a6d5023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Fillers</topic><topic>Fullerenes and related materials; diamonds, graphite</topic><topic>Heat transfer</topic><topic>Materials science</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Optimization</topic><topic>Pastes</topic><topic>Physics</topic><topic>Specific materials</topic><topic>Thermal conductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Chuangang</creatorcontrib><creatorcontrib>Chung, D.D.L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Chuangang</au><au>Chung, D.D.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphite nanoplatelet pastes vs. carbon black pastes as thermal interface materials</atitle><jtitle>Carbon (New York)</jtitle><date>2009</date><risdate>2009</risdate><volume>47</volume><issue>1</issue><spage>295</spage><epage>305</epage><pages>295-305</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><coden>CRBNAH</coden><abstract>Comparison of graphite nanoplatelet (GNP) and carbon black (CB) pastes as thermal interface materials shows that the optimum filler content for attaining the maximum thermal contact conductance (copper proximate surfaces, roughness 15 μm) are 2.4, 15 and 2.4 vol.% for GNP, CB (Tokai) and CB (Cabot), respectively. Except for CB (Cabot), the optimum filler content is diminished when the roughness is decreased from 15 to 0.009 μm. Comparing the fillers at their respective optimum contents shows that (i) GNP is similarly effective as CB (Tokai) for rough (15 μm) surfaces, but is less effective than CB (Tokai) for smooth (0.009 μm) surfaces, and (ii) GNP is more effective than CB (Cabot) for rough surfaces, but is slightly less effective than CB (Cabot) for smooth surfaces. GNP gives higher thermal conductivity and greater bond line thickness than CB (Tokai or Cabot), whether the comparison is at the same filler content or at the respective optimum filler contents. In spite of the high thermal conductivity, the effectiveness of GNP is limited, due to the high bond line thickness. CB (Tokai) gives higher thermal conductivity than CB (Cabot), thus causing CB (Tokai) to be more effective than CB (Cabot).</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2008.10.011</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0008-6223
ispartof Carbon (New York), 2009, Vol.47 (1), p.295-305
issn 0008-6223
1873-3891
language eng
recordid cdi_proquest_miscellaneous_901681730
source Elsevier ScienceDirect Journals
subjects Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
Fillers
Fullerenes and related materials
diamonds, graphite
Heat transfer
Materials science
Nanocomposites
Nanomaterials
Nanostructure
Optimization
Pastes
Physics
Specific materials
Thermal conductivity
title Graphite nanoplatelet pastes vs. carbon black pastes as thermal interface materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T15%3A03%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphite%20nanoplatelet%20pastes%20vs.%20carbon%20black%20pastes%20as%20thermal%20interface%20materials&rft.jtitle=Carbon%20(New%20York)&rft.au=Lin,%20Chuangang&rft.date=2009&rft.volume=47&rft.issue=1&rft.spage=295&rft.epage=305&rft.pages=295-305&rft.issn=0008-6223&rft.eissn=1873-3891&rft.coden=CRBNAH&rft_id=info:doi/10.1016/j.carbon.2008.10.011&rft_dat=%3Cproquest_cross%3E901681730%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=35392926&rft_id=info:pmid/&rft_els_id=S0008622308005447&rfr_iscdi=true