Combining laser chemical processing and aerosol jet printing: a laboratory scale feasibility study

First results showing the viability of combining laser chemical processing (LCP) and aerosol jet printing (AJP) technologies to produce a high‐efficiency front side for silicon solar cells are presented. LCP simultaneously opens the anti‐reflection coating (ARC) and highly dopes the underlying silic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Progress in photovoltaics 2011-05, Vol.19 (3), p.253-259
Hauptverfasser: Drew, Kristine, Hopman, Sybille, Hörteis, Matthias, Glunz, Stefan W., Granek, Filip
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 259
container_issue 3
container_start_page 253
container_title Progress in photovoltaics
container_volume 19
creator Drew, Kristine
Hopman, Sybille
Hörteis, Matthias
Glunz, Stefan W.
Granek, Filip
description First results showing the viability of combining laser chemical processing (LCP) and aerosol jet printing (AJP) technologies to produce a high‐efficiency front side for silicon solar cells are presented. LCP simultaneously opens the anti‐reflection coating (ARC) and highly dopes the underlying silicon to create a selective emitter, while AJP is the first in a two‐step fine‐line contact formation procedure. The electrical properties as well as the morphology of the resulting structures are presented. Performance similar to that achieved with evaporated TiPdAg metallization is demonstrated. Copyright © 2010 John Wiley & Sons, Ltd. First results showing the viability of combining laser chemical processing (LCP) and aerosol jet printing (AJP) technologies to produce a high‐efficiency front side for silicon solar cells are presented. LCP simultaneously opens the anti‐reflection coating (ARC) and highly dopes the underlying silicon to create a selective emitter, while AJP is the first in a two‐step fine‐line contact formation procedure. The electrical properties as well as the morphology of the resulting structures are presented.
doi_str_mv 10.1002/pip.1014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901680144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>901680144</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4724-e1bd51528aea1d816b180d7bda77f021567a5364869af46dfdbf020400ce5e553</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhCMEEqUg8Qi5ILgE7CS2Y25QQVtRQSVAcLM2yQZc8lPsVJC3x1Gj3jh5tfPtyDOed0rJJSUkvFrrtRtovOeNKJEyoEy-7_czDwMhJTv0jqxdEUJFIvnISydNlepa1x9-CRaNn31ipTMo_bVpMrS2V6DOfUDT2Kb0V9g6SdetE659cFdpY6BtTOdbd4Z-gWB1qkvduk27ybtj76CA0uLJ8I691_u7l8ksWDxN55ObRZDFIowDpGnOKAsTQKB5QnlKE5KLNAchChJSxgWwiMcJl1DEPC_y1K1JTEiGDBmLxt751tf9_HuDtlWVthmWJdTYbKyShPLENRM78mJLZi6TNVgol6gC0ylKVN-ici2qvkWHng2m0McrDNSZtjs-jEnEJaOOC7bcjy6x-9dPLefLwXfgtW3xd8eD-VJcRIKpt8epCh8ixma3Qj1Hf_LZkD4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901680144</pqid></control><display><type>article</type><title>Combining laser chemical processing and aerosol jet printing: a laboratory scale feasibility study</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Drew, Kristine ; Hopman, Sybille ; Hörteis, Matthias ; Glunz, Stefan W. ; Granek, Filip</creator><creatorcontrib>Drew, Kristine ; Hopman, Sybille ; Hörteis, Matthias ; Glunz, Stefan W. ; Granek, Filip</creatorcontrib><description>First results showing the viability of combining laser chemical processing (LCP) and aerosol jet printing (AJP) technologies to produce a high‐efficiency front side for silicon solar cells are presented. LCP simultaneously opens the anti‐reflection coating (ARC) and highly dopes the underlying silicon to create a selective emitter, while AJP is the first in a two‐step fine‐line contact formation procedure. The electrical properties as well as the morphology of the resulting structures are presented. Performance similar to that achieved with evaporated TiPdAg metallization is demonstrated. Copyright © 2010 John Wiley &amp; Sons, Ltd. First results showing the viability of combining laser chemical processing (LCP) and aerosol jet printing (AJP) technologies to produce a high‐efficiency front side for silicon solar cells are presented. LCP simultaneously opens the anti‐reflection coating (ARC) and highly dopes the underlying silicon to create a selective emitter, while AJP is the first in a two‐step fine‐line contact formation procedure. The electrical properties as well as the morphology of the resulting structures are presented.</description><identifier>ISSN: 1062-7995</identifier><identifier>ISSN: 1099-159X</identifier><identifier>EISSN: 1099-159X</identifier><identifier>DOI: 10.1002/pip.1014</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Aerosols ; Applied sciences ; Energy ; Exact sciences and technology ; Feasibility studies ; fine-line printing ; high-efficiency ; Jet printing ; laser doping ; Lasers ; Liquid crystal polymers ; Natural energy ; Photovoltaic cells ; Photovoltaic conversion ; selective emitter ; Silicon ; silicon solar cells ; Solar cells ; Solar cells. Photoelectrochemical cells ; Solar energy</subject><ispartof>Progress in photovoltaics, 2011-05, Vol.19 (3), p.253-259</ispartof><rights>Copyright © 2010 John Wiley &amp; Sons, Ltd.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4724-e1bd51528aea1d816b180d7bda77f021567a5364869af46dfdbf020400ce5e553</citedby><cites>FETCH-LOGICAL-c4724-e1bd51528aea1d816b180d7bda77f021567a5364869af46dfdbf020400ce5e553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpip.1014$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpip.1014$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24036951$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Drew, Kristine</creatorcontrib><creatorcontrib>Hopman, Sybille</creatorcontrib><creatorcontrib>Hörteis, Matthias</creatorcontrib><creatorcontrib>Glunz, Stefan W.</creatorcontrib><creatorcontrib>Granek, Filip</creatorcontrib><title>Combining laser chemical processing and aerosol jet printing: a laboratory scale feasibility study</title><title>Progress in photovoltaics</title><addtitle>Prog. Photovolt: Res. Appl</addtitle><description>First results showing the viability of combining laser chemical processing (LCP) and aerosol jet printing (AJP) technologies to produce a high‐efficiency front side for silicon solar cells are presented. LCP simultaneously opens the anti‐reflection coating (ARC) and highly dopes the underlying silicon to create a selective emitter, while AJP is the first in a two‐step fine‐line contact formation procedure. The electrical properties as well as the morphology of the resulting structures are presented. Performance similar to that achieved with evaporated TiPdAg metallization is demonstrated. Copyright © 2010 John Wiley &amp; Sons, Ltd. First results showing the viability of combining laser chemical processing (LCP) and aerosol jet printing (AJP) technologies to produce a high‐efficiency front side for silicon solar cells are presented. LCP simultaneously opens the anti‐reflection coating (ARC) and highly dopes the underlying silicon to create a selective emitter, while AJP is the first in a two‐step fine‐line contact formation procedure. The electrical properties as well as the morphology of the resulting structures are presented.</description><subject>Aerosols</subject><subject>Applied sciences</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Feasibility studies</subject><subject>fine-line printing</subject><subject>high-efficiency</subject><subject>Jet printing</subject><subject>laser doping</subject><subject>Lasers</subject><subject>Liquid crystal polymers</subject><subject>Natural energy</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic conversion</subject><subject>selective emitter</subject><subject>Silicon</subject><subject>silicon solar cells</subject><subject>Solar cells</subject><subject>Solar cells. Photoelectrochemical cells</subject><subject>Solar energy</subject><issn>1062-7995</issn><issn>1099-159X</issn><issn>1099-159X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OwzAQhCMEEqUg8Qi5ILgE7CS2Y25QQVtRQSVAcLM2yQZc8lPsVJC3x1Gj3jh5tfPtyDOed0rJJSUkvFrrtRtovOeNKJEyoEy-7_czDwMhJTv0jqxdEUJFIvnISydNlepa1x9-CRaNn31ipTMo_bVpMrS2V6DOfUDT2Kb0V9g6SdetE659cFdpY6BtTOdbd4Z-gWB1qkvduk27ybtj76CA0uLJ8I691_u7l8ksWDxN55ObRZDFIowDpGnOKAsTQKB5QnlKE5KLNAchChJSxgWwiMcJl1DEPC_y1K1JTEiGDBmLxt751tf9_HuDtlWVthmWJdTYbKyShPLENRM78mJLZi6TNVgol6gC0ylKVN-ici2qvkWHng2m0McrDNSZtjs-jEnEJaOOC7bcjy6x-9dPLefLwXfgtW3xd8eD-VJcRIKpt8epCh8ixma3Qj1Hf_LZkD4</recordid><startdate>201105</startdate><enddate>201105</enddate><creator>Drew, Kristine</creator><creator>Hopman, Sybille</creator><creator>Hörteis, Matthias</creator><creator>Glunz, Stefan W.</creator><creator>Granek, Filip</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201105</creationdate><title>Combining laser chemical processing and aerosol jet printing: a laboratory scale feasibility study</title><author>Drew, Kristine ; Hopman, Sybille ; Hörteis, Matthias ; Glunz, Stefan W. ; Granek, Filip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4724-e1bd51528aea1d816b180d7bda77f021567a5364869af46dfdbf020400ce5e553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Aerosols</topic><topic>Applied sciences</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Feasibility studies</topic><topic>fine-line printing</topic><topic>high-efficiency</topic><topic>Jet printing</topic><topic>laser doping</topic><topic>Lasers</topic><topic>Liquid crystal polymers</topic><topic>Natural energy</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic conversion</topic><topic>selective emitter</topic><topic>Silicon</topic><topic>silicon solar cells</topic><topic>Solar cells</topic><topic>Solar cells. Photoelectrochemical cells</topic><topic>Solar energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Drew, Kristine</creatorcontrib><creatorcontrib>Hopman, Sybille</creatorcontrib><creatorcontrib>Hörteis, Matthias</creatorcontrib><creatorcontrib>Glunz, Stefan W.</creatorcontrib><creatorcontrib>Granek, Filip</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Progress in photovoltaics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Drew, Kristine</au><au>Hopman, Sybille</au><au>Hörteis, Matthias</au><au>Glunz, Stefan W.</au><au>Granek, Filip</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combining laser chemical processing and aerosol jet printing: a laboratory scale feasibility study</atitle><jtitle>Progress in photovoltaics</jtitle><addtitle>Prog. Photovolt: Res. Appl</addtitle><date>2011-05</date><risdate>2011</risdate><volume>19</volume><issue>3</issue><spage>253</spage><epage>259</epage><pages>253-259</pages><issn>1062-7995</issn><issn>1099-159X</issn><eissn>1099-159X</eissn><abstract>First results showing the viability of combining laser chemical processing (LCP) and aerosol jet printing (AJP) technologies to produce a high‐efficiency front side for silicon solar cells are presented. LCP simultaneously opens the anti‐reflection coating (ARC) and highly dopes the underlying silicon to create a selective emitter, while AJP is the first in a two‐step fine‐line contact formation procedure. The electrical properties as well as the morphology of the resulting structures are presented. Performance similar to that achieved with evaporated TiPdAg metallization is demonstrated. Copyright © 2010 John Wiley &amp; Sons, Ltd. First results showing the viability of combining laser chemical processing (LCP) and aerosol jet printing (AJP) technologies to produce a high‐efficiency front side for silicon solar cells are presented. LCP simultaneously opens the anti‐reflection coating (ARC) and highly dopes the underlying silicon to create a selective emitter, while AJP is the first in a two‐step fine‐line contact formation procedure. The electrical properties as well as the morphology of the resulting structures are presented.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/pip.1014</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1062-7995
ispartof Progress in photovoltaics, 2011-05, Vol.19 (3), p.253-259
issn 1062-7995
1099-159X
1099-159X
language eng
recordid cdi_proquest_miscellaneous_901680144
source Wiley Online Library Journals Frontfile Complete
subjects Aerosols
Applied sciences
Energy
Exact sciences and technology
Feasibility studies
fine-line printing
high-efficiency
Jet printing
laser doping
Lasers
Liquid crystal polymers
Natural energy
Photovoltaic cells
Photovoltaic conversion
selective emitter
Silicon
silicon solar cells
Solar cells
Solar cells. Photoelectrochemical cells
Solar energy
title Combining laser chemical processing and aerosol jet printing: a laboratory scale feasibility study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T19%3A47%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20laser%20chemical%20processing%20and%20aerosol%20jet%20printing:%20a%20laboratory%20scale%20feasibility%20study&rft.jtitle=Progress%20in%20photovoltaics&rft.au=Drew,%20Kristine&rft.date=2011-05&rft.volume=19&rft.issue=3&rft.spage=253&rft.epage=259&rft.pages=253-259&rft.issn=1062-7995&rft.eissn=1099-159X&rft_id=info:doi/10.1002/pip.1014&rft_dat=%3Cproquest_cross%3E901680144%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=901680144&rft_id=info:pmid/&rfr_iscdi=true