Fine-tuning of catalytic tin nanoparticles by the reverse micelle method for direct deposition of silicon nanowires by a plasma-enhanced chemical vapour technique
Using the reverse micelle technique to fine-tune catalytic tin nanoparticles for the manufacture of silicon nanowires via the plasma-enhanced chemical vapour deposition process. [Display omitted] ► The size of the tin nanoparticles could be fined-turned (85–140 nm) using the reverse micelle techniqu...
Gespeichert in:
Veröffentlicht in: | Journal of colloid and interface science 2010-12, Vol.352 (2), p.259-264 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 264 |
---|---|
container_issue | 2 |
container_start_page | 259 |
container_title | Journal of colloid and interface science |
container_volume | 352 |
creator | Poinern, Gérrard E.J. Ng, Yan-Jing Fawcett, Derek |
description | Using the reverse micelle technique to fine-tune catalytic tin nanoparticles for the manufacture of silicon nanowires via the plasma-enhanced chemical vapour deposition process.
[Display omitted]
► The size of the tin nanoparticles could be fined-turned (85–140
nm) using the reverse micelle technique. ► The tin nanoparticles were then used as catalytic precursors to grow silicon nanowires using the plasma-enhanced chemical vapour deposition technique. ► The silicon nanowires produced were 76 and 86
nm in diameter, curved and twisted. ► The new features of this type of nanowire have the potential to be applied to the development of new photovoltaic devices.
The reverse micelle method was used for the reduction of a tin (Sn) salt solution to produce metallic Sn nanoparticles ranging from 85
nm to 140
nm in diameter. The reverse micellar system used in this process was hexane-butanol-cetyl trimethylammonium bromide (CTAB). The diameters of the Sn nanoparticles were proportional to the concentration of the aqueous Sn salt solution. Thus, the size of the Sn nanoparticles can easily be controlled, enabling a simple, reproducible mechanism for the growth of silicon nanowires (SiNWs) using plasma-enhanced chemical vapour deposition (PECVD). Both the Sn nanoparticles and silicon nanowires were characterised using field-emission scanning electron microscopy (FE-SEM). Further characterisations of the SiNW’s were made using transmission electron microscopy (TEM), atomic force microscopy (AFM) and Raman spectroscopy. In addition, dynamic light scattering (DLS) was used to investigate particle size distributions. This procedure demonstrates an economical route for manufacturing reproducible silicon nanowires using fine-tuned Sn nanoparticles for possible solar cell applications. |
doi_str_mv | 10.1016/j.jcis.2010.08.085 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901679153</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002197971001009X</els_id><sourcerecordid>759131257</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-57de46aaa77339b861479f51592ef104e5da1ef1e482d08246434064edeb95f33</originalsourceid><addsrcrecordid>eNqFkcGOFCEURYnROO3oD7gwbIyraoGCokjcmImjJpO40TWh4ZVFpxpKoNr07_ilUtPtLJ2E5AE57_K4F6HXlGwpod37_XZvfd4yUi9IX5d4gjaUKNFIStqnaEMIo42SSl6hFznvCaFUCPUcXTHS91KpboP-3PoATVmCDz9xHLA1xUyn4i0uPuBgQpxNqscJMt6dcBkBJzhCyoAP3sI01QpljA4PMWHnE9iCHcwx--JjWCWzn7yNZ7HfFbgXMnieTD6YBsJoggWH7QhV0Uz4aOa4JFzAjsH_WuAlejaYKcOrS71GP24_fb_50tx9-_z15uNdY7lqSyOkA94ZY6RsW7XrO8qlGgQVisFACQfhDK074D1zpGe84y0nHQcHOyWGtr1G7866c4r12Vz0wef1iyZAXLJW1XOpqHic7KUgnHHJHyWlULSlTMhKsjNpU8w5waDn5A8mnTQleo1b7_Uat17j1qSvS9SmNxf5ZXcA99DyL98KvL0AJldvh1S9rhoPXHWKKb7O-eHMQTX46CHpbD2sudwnql30_5vjL79dy0Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>759131257</pqid></control><display><type>article</type><title>Fine-tuning of catalytic tin nanoparticles by the reverse micelle method for direct deposition of silicon nanowires by a plasma-enhanced chemical vapour technique</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Poinern, Gérrard E.J. ; Ng, Yan-Jing ; Fawcett, Derek</creator><creatorcontrib>Poinern, Gérrard E.J. ; Ng, Yan-Jing ; Fawcett, Derek</creatorcontrib><description>Using the reverse micelle technique to fine-tune catalytic tin nanoparticles for the manufacture of silicon nanowires via the plasma-enhanced chemical vapour deposition process.
[Display omitted]
► The size of the tin nanoparticles could be fined-turned (85–140
nm) using the reverse micelle technique. ► The tin nanoparticles were then used as catalytic precursors to grow silicon nanowires using the plasma-enhanced chemical vapour deposition technique. ► The silicon nanowires produced were 76 and 86
nm in diameter, curved and twisted. ► The new features of this type of nanowire have the potential to be applied to the development of new photovoltaic devices.
The reverse micelle method was used for the reduction of a tin (Sn) salt solution to produce metallic Sn nanoparticles ranging from 85
nm to 140
nm in diameter. The reverse micellar system used in this process was hexane-butanol-cetyl trimethylammonium bromide (CTAB). The diameters of the Sn nanoparticles were proportional to the concentration of the aqueous Sn salt solution. Thus, the size of the Sn nanoparticles can easily be controlled, enabling a simple, reproducible mechanism for the growth of silicon nanowires (SiNWs) using plasma-enhanced chemical vapour deposition (PECVD). Both the Sn nanoparticles and silicon nanowires were characterised using field-emission scanning electron microscopy (FE-SEM). Further characterisations of the SiNW’s were made using transmission electron microscopy (TEM), atomic force microscopy (AFM) and Raman spectroscopy. In addition, dynamic light scattering (DLS) was used to investigate particle size distributions. This procedure demonstrates an economical route for manufacturing reproducible silicon nanowires using fine-tuned Sn nanoparticles for possible solar cell applications.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2010.08.085</identifier><identifier>PMID: 20887996</identifier><identifier>CODEN: JCISA5</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Atomic force microscopy ; Catalysis ; Catalytic tin nanoparticles ; Chemistry ; Colloidal state and disperse state ; Economics ; Exact sciences and technology ; Fine-tuning ; General and physical chemistry ; Metal Nanoparticles - chemistry ; Micelles ; Micelles. Thin films ; Nanoparticles ; Nanotechnology - instrumentation ; Nanotechnology - methods ; Nanowires ; Nanowires - chemistry ; Particle Size ; Physical and chemical studies. Granulometry. Electrokinetic phenomena ; Plasma-enhanced chemical vapour deposition ; Reverse micelle ; Reverse micelles ; Salt solutions ; Silicon ; Silicon - chemistry ; Silicon nanowires ; Surface Properties ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry ; Tin ; Tin - chemistry ; Volatilization</subject><ispartof>Journal of colloid and interface science, 2010-12, Vol.352 (2), p.259-264</ispartof><rights>2010 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2010 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c493t-57de46aaa77339b861479f51592ef104e5da1ef1e482d08246434064edeb95f33</citedby><cites>FETCH-LOGICAL-c493t-57de46aaa77339b861479f51592ef104e5da1ef1e482d08246434064edeb95f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcis.2010.08.085$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23392944$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20887996$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Poinern, Gérrard E.J.</creatorcontrib><creatorcontrib>Ng, Yan-Jing</creatorcontrib><creatorcontrib>Fawcett, Derek</creatorcontrib><title>Fine-tuning of catalytic tin nanoparticles by the reverse micelle method for direct deposition of silicon nanowires by a plasma-enhanced chemical vapour technique</title><title>Journal of colloid and interface science</title><addtitle>J Colloid Interface Sci</addtitle><description>Using the reverse micelle technique to fine-tune catalytic tin nanoparticles for the manufacture of silicon nanowires via the plasma-enhanced chemical vapour deposition process.
[Display omitted]
► The size of the tin nanoparticles could be fined-turned (85–140
nm) using the reverse micelle technique. ► The tin nanoparticles were then used as catalytic precursors to grow silicon nanowires using the plasma-enhanced chemical vapour deposition technique. ► The silicon nanowires produced were 76 and 86
nm in diameter, curved and twisted. ► The new features of this type of nanowire have the potential to be applied to the development of new photovoltaic devices.
The reverse micelle method was used for the reduction of a tin (Sn) salt solution to produce metallic Sn nanoparticles ranging from 85
nm to 140
nm in diameter. The reverse micellar system used in this process was hexane-butanol-cetyl trimethylammonium bromide (CTAB). The diameters of the Sn nanoparticles were proportional to the concentration of the aqueous Sn salt solution. Thus, the size of the Sn nanoparticles can easily be controlled, enabling a simple, reproducible mechanism for the growth of silicon nanowires (SiNWs) using plasma-enhanced chemical vapour deposition (PECVD). Both the Sn nanoparticles and silicon nanowires were characterised using field-emission scanning electron microscopy (FE-SEM). Further characterisations of the SiNW’s were made using transmission electron microscopy (TEM), atomic force microscopy (AFM) and Raman spectroscopy. In addition, dynamic light scattering (DLS) was used to investigate particle size distributions. This procedure demonstrates an economical route for manufacturing reproducible silicon nanowires using fine-tuned Sn nanoparticles for possible solar cell applications.</description><subject>Atomic force microscopy</subject><subject>Catalysis</subject><subject>Catalytic tin nanoparticles</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Economics</subject><subject>Exact sciences and technology</subject><subject>Fine-tuning</subject><subject>General and physical chemistry</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Micelles</subject><subject>Micelles. Thin films</subject><subject>Nanoparticles</subject><subject>Nanotechnology - instrumentation</subject><subject>Nanotechnology - methods</subject><subject>Nanowires</subject><subject>Nanowires - chemistry</subject><subject>Particle Size</subject><subject>Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><subject>Plasma-enhanced chemical vapour deposition</subject><subject>Reverse micelle</subject><subject>Reverse micelles</subject><subject>Salt solutions</subject><subject>Silicon</subject><subject>Silicon - chemistry</subject><subject>Silicon nanowires</subject><subject>Surface Properties</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><subject>Tin</subject><subject>Tin - chemistry</subject><subject>Volatilization</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcGOFCEURYnROO3oD7gwbIyraoGCokjcmImjJpO40TWh4ZVFpxpKoNr07_ilUtPtLJ2E5AE57_K4F6HXlGwpod37_XZvfd4yUi9IX5d4gjaUKNFIStqnaEMIo42SSl6hFznvCaFUCPUcXTHS91KpboP-3PoATVmCDz9xHLA1xUyn4i0uPuBgQpxNqscJMt6dcBkBJzhCyoAP3sI01QpljA4PMWHnE9iCHcwx--JjWCWzn7yNZ7HfFbgXMnieTD6YBsJoggWH7QhV0Uz4aOa4JFzAjsH_WuAlejaYKcOrS71GP24_fb_50tx9-_z15uNdY7lqSyOkA94ZY6RsW7XrO8qlGgQVisFACQfhDK074D1zpGe84y0nHQcHOyWGtr1G7866c4r12Vz0wef1iyZAXLJW1XOpqHic7KUgnHHJHyWlULSlTMhKsjNpU8w5waDn5A8mnTQleo1b7_Uat17j1qSvS9SmNxf5ZXcA99DyL98KvL0AJldvh1S9rhoPXHWKKb7O-eHMQTX46CHpbD2sudwnql30_5vjL79dy0Y</recordid><startdate>20101215</startdate><enddate>20101215</enddate><creator>Poinern, Gérrard E.J.</creator><creator>Ng, Yan-Jing</creator><creator>Fawcett, Derek</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20101215</creationdate><title>Fine-tuning of catalytic tin nanoparticles by the reverse micelle method for direct deposition of silicon nanowires by a plasma-enhanced chemical vapour technique</title><author>Poinern, Gérrard E.J. ; Ng, Yan-Jing ; Fawcett, Derek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-57de46aaa77339b861479f51592ef104e5da1ef1e482d08246434064edeb95f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Atomic force microscopy</topic><topic>Catalysis</topic><topic>Catalytic tin nanoparticles</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Economics</topic><topic>Exact sciences and technology</topic><topic>Fine-tuning</topic><topic>General and physical chemistry</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Micelles</topic><topic>Micelles. Thin films</topic><topic>Nanoparticles</topic><topic>Nanotechnology - instrumentation</topic><topic>Nanotechnology - methods</topic><topic>Nanowires</topic><topic>Nanowires - chemistry</topic><topic>Particle Size</topic><topic>Physical and chemical studies. Granulometry. Electrokinetic phenomena</topic><topic>Plasma-enhanced chemical vapour deposition</topic><topic>Reverse micelle</topic><topic>Reverse micelles</topic><topic>Salt solutions</topic><topic>Silicon</topic><topic>Silicon - chemistry</topic><topic>Silicon nanowires</topic><topic>Surface Properties</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><topic>Tin</topic><topic>Tin - chemistry</topic><topic>Volatilization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Poinern, Gérrard E.J.</creatorcontrib><creatorcontrib>Ng, Yan-Jing</creatorcontrib><creatorcontrib>Fawcett, Derek</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Poinern, Gérrard E.J.</au><au>Ng, Yan-Jing</au><au>Fawcett, Derek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fine-tuning of catalytic tin nanoparticles by the reverse micelle method for direct deposition of silicon nanowires by a plasma-enhanced chemical vapour technique</atitle><jtitle>Journal of colloid and interface science</jtitle><addtitle>J Colloid Interface Sci</addtitle><date>2010-12-15</date><risdate>2010</risdate><volume>352</volume><issue>2</issue><spage>259</spage><epage>264</epage><pages>259-264</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><coden>JCISA5</coden><abstract>Using the reverse micelle technique to fine-tune catalytic tin nanoparticles for the manufacture of silicon nanowires via the plasma-enhanced chemical vapour deposition process.
[Display omitted]
► The size of the tin nanoparticles could be fined-turned (85–140
nm) using the reverse micelle technique. ► The tin nanoparticles were then used as catalytic precursors to grow silicon nanowires using the plasma-enhanced chemical vapour deposition technique. ► The silicon nanowires produced were 76 and 86
nm in diameter, curved and twisted. ► The new features of this type of nanowire have the potential to be applied to the development of new photovoltaic devices.
The reverse micelle method was used for the reduction of a tin (Sn) salt solution to produce metallic Sn nanoparticles ranging from 85
nm to 140
nm in diameter. The reverse micellar system used in this process was hexane-butanol-cetyl trimethylammonium bromide (CTAB). The diameters of the Sn nanoparticles were proportional to the concentration of the aqueous Sn salt solution. Thus, the size of the Sn nanoparticles can easily be controlled, enabling a simple, reproducible mechanism for the growth of silicon nanowires (SiNWs) using plasma-enhanced chemical vapour deposition (PECVD). Both the Sn nanoparticles and silicon nanowires were characterised using field-emission scanning electron microscopy (FE-SEM). Further characterisations of the SiNW’s were made using transmission electron microscopy (TEM), atomic force microscopy (AFM) and Raman spectroscopy. In addition, dynamic light scattering (DLS) was used to investigate particle size distributions. This procedure demonstrates an economical route for manufacturing reproducible silicon nanowires using fine-tuned Sn nanoparticles for possible solar cell applications.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><pmid>20887996</pmid><doi>10.1016/j.jcis.2010.08.085</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9797 |
ispartof | Journal of colloid and interface science, 2010-12, Vol.352 (2), p.259-264 |
issn | 0021-9797 1095-7103 |
language | eng |
recordid | cdi_proquest_miscellaneous_901679153 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Atomic force microscopy Catalysis Catalytic tin nanoparticles Chemistry Colloidal state and disperse state Economics Exact sciences and technology Fine-tuning General and physical chemistry Metal Nanoparticles - chemistry Micelles Micelles. Thin films Nanoparticles Nanotechnology - instrumentation Nanotechnology - methods Nanowires Nanowires - chemistry Particle Size Physical and chemical studies. Granulometry. Electrokinetic phenomena Plasma-enhanced chemical vapour deposition Reverse micelle Reverse micelles Salt solutions Silicon Silicon - chemistry Silicon nanowires Surface Properties Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry Tin Tin - chemistry Volatilization |
title | Fine-tuning of catalytic tin nanoparticles by the reverse micelle method for direct deposition of silicon nanowires by a plasma-enhanced chemical vapour technique |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T18%3A30%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fine-tuning%20of%20catalytic%20tin%20nanoparticles%20by%20the%20reverse%20micelle%20method%20for%20direct%20deposition%20of%20silicon%20nanowires%20by%20a%20plasma-enhanced%20chemical%20vapour%20technique&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Poinern,%20G%C3%A9rrard%20E.J.&rft.date=2010-12-15&rft.volume=352&rft.issue=2&rft.spage=259&rft.epage=264&rft.pages=259-264&rft.issn=0021-9797&rft.eissn=1095-7103&rft.coden=JCISA5&rft_id=info:doi/10.1016/j.jcis.2010.08.085&rft_dat=%3Cproquest_cross%3E759131257%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=759131257&rft_id=info:pmid/20887996&rft_els_id=S002197971001009X&rfr_iscdi=true |