Fine-tuning of catalytic tin nanoparticles by the reverse micelle method for direct deposition of silicon nanowires by a plasma-enhanced chemical vapour technique

Using the reverse micelle technique to fine-tune catalytic tin nanoparticles for the manufacture of silicon nanowires via the plasma-enhanced chemical vapour deposition process. [Display omitted] ► The size of the tin nanoparticles could be fined-turned (85–140 nm) using the reverse micelle techniqu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2010-12, Vol.352 (2), p.259-264
Hauptverfasser: Poinern, Gérrard E.J., Ng, Yan-Jing, Fawcett, Derek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 264
container_issue 2
container_start_page 259
container_title Journal of colloid and interface science
container_volume 352
creator Poinern, Gérrard E.J.
Ng, Yan-Jing
Fawcett, Derek
description Using the reverse micelle technique to fine-tune catalytic tin nanoparticles for the manufacture of silicon nanowires via the plasma-enhanced chemical vapour deposition process. [Display omitted] ► The size of the tin nanoparticles could be fined-turned (85–140 nm) using the reverse micelle technique. ► The tin nanoparticles were then used as catalytic precursors to grow silicon nanowires using the plasma-enhanced chemical vapour deposition technique. ► The silicon nanowires produced were 76 and 86 nm in diameter, curved and twisted. ► The new features of this type of nanowire have the potential to be applied to the development of new photovoltaic devices. The reverse micelle method was used for the reduction of a tin (Sn) salt solution to produce metallic Sn nanoparticles ranging from 85 nm to 140 nm in diameter. The reverse micellar system used in this process was hexane-butanol-cetyl trimethylammonium bromide (CTAB). The diameters of the Sn nanoparticles were proportional to the concentration of the aqueous Sn salt solution. Thus, the size of the Sn nanoparticles can easily be controlled, enabling a simple, reproducible mechanism for the growth of silicon nanowires (SiNWs) using plasma-enhanced chemical vapour deposition (PECVD). Both the Sn nanoparticles and silicon nanowires were characterised using field-emission scanning electron microscopy (FE-SEM). Further characterisations of the SiNW’s were made using transmission electron microscopy (TEM), atomic force microscopy (AFM) and Raman spectroscopy. In addition, dynamic light scattering (DLS) was used to investigate particle size distributions. This procedure demonstrates an economical route for manufacturing reproducible silicon nanowires using fine-tuned Sn nanoparticles for possible solar cell applications.
doi_str_mv 10.1016/j.jcis.2010.08.085
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901679153</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002197971001009X</els_id><sourcerecordid>759131257</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-57de46aaa77339b861479f51592ef104e5da1ef1e482d08246434064edeb95f33</originalsourceid><addsrcrecordid>eNqFkcGOFCEURYnROO3oD7gwbIyraoGCokjcmImjJpO40TWh4ZVFpxpKoNr07_ilUtPtLJ2E5AE57_K4F6HXlGwpod37_XZvfd4yUi9IX5d4gjaUKNFIStqnaEMIo42SSl6hFznvCaFUCPUcXTHS91KpboP-3PoATVmCDz9xHLA1xUyn4i0uPuBgQpxNqscJMt6dcBkBJzhCyoAP3sI01QpljA4PMWHnE9iCHcwx--JjWCWzn7yNZ7HfFbgXMnieTD6YBsJoggWH7QhV0Uz4aOa4JFzAjsH_WuAlejaYKcOrS71GP24_fb_50tx9-_z15uNdY7lqSyOkA94ZY6RsW7XrO8qlGgQVisFACQfhDK074D1zpGe84y0nHQcHOyWGtr1G7866c4r12Vz0wef1iyZAXLJW1XOpqHic7KUgnHHJHyWlULSlTMhKsjNpU8w5waDn5A8mnTQleo1b7_Uat17j1qSvS9SmNxf5ZXcA99DyL98KvL0AJldvh1S9rhoPXHWKKb7O-eHMQTX46CHpbD2sudwnql30_5vjL79dy0Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>759131257</pqid></control><display><type>article</type><title>Fine-tuning of catalytic tin nanoparticles by the reverse micelle method for direct deposition of silicon nanowires by a plasma-enhanced chemical vapour technique</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Poinern, Gérrard E.J. ; Ng, Yan-Jing ; Fawcett, Derek</creator><creatorcontrib>Poinern, Gérrard E.J. ; Ng, Yan-Jing ; Fawcett, Derek</creatorcontrib><description>Using the reverse micelle technique to fine-tune catalytic tin nanoparticles for the manufacture of silicon nanowires via the plasma-enhanced chemical vapour deposition process. [Display omitted] ► The size of the tin nanoparticles could be fined-turned (85–140 nm) using the reverse micelle technique. ► The tin nanoparticles were then used as catalytic precursors to grow silicon nanowires using the plasma-enhanced chemical vapour deposition technique. ► The silicon nanowires produced were 76 and 86 nm in diameter, curved and twisted. ► The new features of this type of nanowire have the potential to be applied to the development of new photovoltaic devices. The reverse micelle method was used for the reduction of a tin (Sn) salt solution to produce metallic Sn nanoparticles ranging from 85 nm to 140 nm in diameter. The reverse micellar system used in this process was hexane-butanol-cetyl trimethylammonium bromide (CTAB). The diameters of the Sn nanoparticles were proportional to the concentration of the aqueous Sn salt solution. Thus, the size of the Sn nanoparticles can easily be controlled, enabling a simple, reproducible mechanism for the growth of silicon nanowires (SiNWs) using plasma-enhanced chemical vapour deposition (PECVD). Both the Sn nanoparticles and silicon nanowires were characterised using field-emission scanning electron microscopy (FE-SEM). Further characterisations of the SiNW’s were made using transmission electron microscopy (TEM), atomic force microscopy (AFM) and Raman spectroscopy. In addition, dynamic light scattering (DLS) was used to investigate particle size distributions. This procedure demonstrates an economical route for manufacturing reproducible silicon nanowires using fine-tuned Sn nanoparticles for possible solar cell applications.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2010.08.085</identifier><identifier>PMID: 20887996</identifier><identifier>CODEN: JCISA5</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Atomic force microscopy ; Catalysis ; Catalytic tin nanoparticles ; Chemistry ; Colloidal state and disperse state ; Economics ; Exact sciences and technology ; Fine-tuning ; General and physical chemistry ; Metal Nanoparticles - chemistry ; Micelles ; Micelles. Thin films ; Nanoparticles ; Nanotechnology - instrumentation ; Nanotechnology - methods ; Nanowires ; Nanowires - chemistry ; Particle Size ; Physical and chemical studies. Granulometry. Electrokinetic phenomena ; Plasma-enhanced chemical vapour deposition ; Reverse micelle ; Reverse micelles ; Salt solutions ; Silicon ; Silicon - chemistry ; Silicon nanowires ; Surface Properties ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry ; Tin ; Tin - chemistry ; Volatilization</subject><ispartof>Journal of colloid and interface science, 2010-12, Vol.352 (2), p.259-264</ispartof><rights>2010 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2010 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c493t-57de46aaa77339b861479f51592ef104e5da1ef1e482d08246434064edeb95f33</citedby><cites>FETCH-LOGICAL-c493t-57de46aaa77339b861479f51592ef104e5da1ef1e482d08246434064edeb95f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcis.2010.08.085$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23392944$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20887996$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Poinern, Gérrard E.J.</creatorcontrib><creatorcontrib>Ng, Yan-Jing</creatorcontrib><creatorcontrib>Fawcett, Derek</creatorcontrib><title>Fine-tuning of catalytic tin nanoparticles by the reverse micelle method for direct deposition of silicon nanowires by a plasma-enhanced chemical vapour technique</title><title>Journal of colloid and interface science</title><addtitle>J Colloid Interface Sci</addtitle><description>Using the reverse micelle technique to fine-tune catalytic tin nanoparticles for the manufacture of silicon nanowires via the plasma-enhanced chemical vapour deposition process. [Display omitted] ► The size of the tin nanoparticles could be fined-turned (85–140 nm) using the reverse micelle technique. ► The tin nanoparticles were then used as catalytic precursors to grow silicon nanowires using the plasma-enhanced chemical vapour deposition technique. ► The silicon nanowires produced were 76 and 86 nm in diameter, curved and twisted. ► The new features of this type of nanowire have the potential to be applied to the development of new photovoltaic devices. The reverse micelle method was used for the reduction of a tin (Sn) salt solution to produce metallic Sn nanoparticles ranging from 85 nm to 140 nm in diameter. The reverse micellar system used in this process was hexane-butanol-cetyl trimethylammonium bromide (CTAB). The diameters of the Sn nanoparticles were proportional to the concentration of the aqueous Sn salt solution. Thus, the size of the Sn nanoparticles can easily be controlled, enabling a simple, reproducible mechanism for the growth of silicon nanowires (SiNWs) using plasma-enhanced chemical vapour deposition (PECVD). Both the Sn nanoparticles and silicon nanowires were characterised using field-emission scanning electron microscopy (FE-SEM). Further characterisations of the SiNW’s were made using transmission electron microscopy (TEM), atomic force microscopy (AFM) and Raman spectroscopy. In addition, dynamic light scattering (DLS) was used to investigate particle size distributions. This procedure demonstrates an economical route for manufacturing reproducible silicon nanowires using fine-tuned Sn nanoparticles for possible solar cell applications.</description><subject>Atomic force microscopy</subject><subject>Catalysis</subject><subject>Catalytic tin nanoparticles</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Economics</subject><subject>Exact sciences and technology</subject><subject>Fine-tuning</subject><subject>General and physical chemistry</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Micelles</subject><subject>Micelles. Thin films</subject><subject>Nanoparticles</subject><subject>Nanotechnology - instrumentation</subject><subject>Nanotechnology - methods</subject><subject>Nanowires</subject><subject>Nanowires - chemistry</subject><subject>Particle Size</subject><subject>Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><subject>Plasma-enhanced chemical vapour deposition</subject><subject>Reverse micelle</subject><subject>Reverse micelles</subject><subject>Salt solutions</subject><subject>Silicon</subject><subject>Silicon - chemistry</subject><subject>Silicon nanowires</subject><subject>Surface Properties</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><subject>Tin</subject><subject>Tin - chemistry</subject><subject>Volatilization</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcGOFCEURYnROO3oD7gwbIyraoGCokjcmImjJpO40TWh4ZVFpxpKoNr07_ilUtPtLJ2E5AE57_K4F6HXlGwpod37_XZvfd4yUi9IX5d4gjaUKNFIStqnaEMIo42SSl6hFznvCaFUCPUcXTHS91KpboP-3PoATVmCDz9xHLA1xUyn4i0uPuBgQpxNqscJMt6dcBkBJzhCyoAP3sI01QpljA4PMWHnE9iCHcwx--JjWCWzn7yNZ7HfFbgXMnieTD6YBsJoggWH7QhV0Uz4aOa4JFzAjsH_WuAlejaYKcOrS71GP24_fb_50tx9-_z15uNdY7lqSyOkA94ZY6RsW7XrO8qlGgQVisFACQfhDK074D1zpGe84y0nHQcHOyWGtr1G7866c4r12Vz0wef1iyZAXLJW1XOpqHic7KUgnHHJHyWlULSlTMhKsjNpU8w5waDn5A8mnTQleo1b7_Uat17j1qSvS9SmNxf5ZXcA99DyL98KvL0AJldvh1S9rhoPXHWKKb7O-eHMQTX46CHpbD2sudwnql30_5vjL79dy0Y</recordid><startdate>20101215</startdate><enddate>20101215</enddate><creator>Poinern, Gérrard E.J.</creator><creator>Ng, Yan-Jing</creator><creator>Fawcett, Derek</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20101215</creationdate><title>Fine-tuning of catalytic tin nanoparticles by the reverse micelle method for direct deposition of silicon nanowires by a plasma-enhanced chemical vapour technique</title><author>Poinern, Gérrard E.J. ; Ng, Yan-Jing ; Fawcett, Derek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-57de46aaa77339b861479f51592ef104e5da1ef1e482d08246434064edeb95f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Atomic force microscopy</topic><topic>Catalysis</topic><topic>Catalytic tin nanoparticles</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Economics</topic><topic>Exact sciences and technology</topic><topic>Fine-tuning</topic><topic>General and physical chemistry</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Micelles</topic><topic>Micelles. Thin films</topic><topic>Nanoparticles</topic><topic>Nanotechnology - instrumentation</topic><topic>Nanotechnology - methods</topic><topic>Nanowires</topic><topic>Nanowires - chemistry</topic><topic>Particle Size</topic><topic>Physical and chemical studies. Granulometry. Electrokinetic phenomena</topic><topic>Plasma-enhanced chemical vapour deposition</topic><topic>Reverse micelle</topic><topic>Reverse micelles</topic><topic>Salt solutions</topic><topic>Silicon</topic><topic>Silicon - chemistry</topic><topic>Silicon nanowires</topic><topic>Surface Properties</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><topic>Tin</topic><topic>Tin - chemistry</topic><topic>Volatilization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Poinern, Gérrard E.J.</creatorcontrib><creatorcontrib>Ng, Yan-Jing</creatorcontrib><creatorcontrib>Fawcett, Derek</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Poinern, Gérrard E.J.</au><au>Ng, Yan-Jing</au><au>Fawcett, Derek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fine-tuning of catalytic tin nanoparticles by the reverse micelle method for direct deposition of silicon nanowires by a plasma-enhanced chemical vapour technique</atitle><jtitle>Journal of colloid and interface science</jtitle><addtitle>J Colloid Interface Sci</addtitle><date>2010-12-15</date><risdate>2010</risdate><volume>352</volume><issue>2</issue><spage>259</spage><epage>264</epage><pages>259-264</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><coden>JCISA5</coden><abstract>Using the reverse micelle technique to fine-tune catalytic tin nanoparticles for the manufacture of silicon nanowires via the plasma-enhanced chemical vapour deposition process. [Display omitted] ► The size of the tin nanoparticles could be fined-turned (85–140 nm) using the reverse micelle technique. ► The tin nanoparticles were then used as catalytic precursors to grow silicon nanowires using the plasma-enhanced chemical vapour deposition technique. ► The silicon nanowires produced were 76 and 86 nm in diameter, curved and twisted. ► The new features of this type of nanowire have the potential to be applied to the development of new photovoltaic devices. The reverse micelle method was used for the reduction of a tin (Sn) salt solution to produce metallic Sn nanoparticles ranging from 85 nm to 140 nm in diameter. The reverse micellar system used in this process was hexane-butanol-cetyl trimethylammonium bromide (CTAB). The diameters of the Sn nanoparticles were proportional to the concentration of the aqueous Sn salt solution. Thus, the size of the Sn nanoparticles can easily be controlled, enabling a simple, reproducible mechanism for the growth of silicon nanowires (SiNWs) using plasma-enhanced chemical vapour deposition (PECVD). Both the Sn nanoparticles and silicon nanowires were characterised using field-emission scanning electron microscopy (FE-SEM). Further characterisations of the SiNW’s were made using transmission electron microscopy (TEM), atomic force microscopy (AFM) and Raman spectroscopy. In addition, dynamic light scattering (DLS) was used to investigate particle size distributions. This procedure demonstrates an economical route for manufacturing reproducible silicon nanowires using fine-tuned Sn nanoparticles for possible solar cell applications.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><pmid>20887996</pmid><doi>10.1016/j.jcis.2010.08.085</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9797
ispartof Journal of colloid and interface science, 2010-12, Vol.352 (2), p.259-264
issn 0021-9797
1095-7103
language eng
recordid cdi_proquest_miscellaneous_901679153
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Atomic force microscopy
Catalysis
Catalytic tin nanoparticles
Chemistry
Colloidal state and disperse state
Economics
Exact sciences and technology
Fine-tuning
General and physical chemistry
Metal Nanoparticles - chemistry
Micelles
Micelles. Thin films
Nanoparticles
Nanotechnology - instrumentation
Nanotechnology - methods
Nanowires
Nanowires - chemistry
Particle Size
Physical and chemical studies. Granulometry. Electrokinetic phenomena
Plasma-enhanced chemical vapour deposition
Reverse micelle
Reverse micelles
Salt solutions
Silicon
Silicon - chemistry
Silicon nanowires
Surface Properties
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
Tin
Tin - chemistry
Volatilization
title Fine-tuning of catalytic tin nanoparticles by the reverse micelle method for direct deposition of silicon nanowires by a plasma-enhanced chemical vapour technique
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T18%3A30%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fine-tuning%20of%20catalytic%20tin%20nanoparticles%20by%20the%20reverse%20micelle%20method%20for%20direct%20deposition%20of%20silicon%20nanowires%20by%20a%20plasma-enhanced%20chemical%20vapour%20technique&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Poinern,%20G%C3%A9rrard%20E.J.&rft.date=2010-12-15&rft.volume=352&rft.issue=2&rft.spage=259&rft.epage=264&rft.pages=259-264&rft.issn=0021-9797&rft.eissn=1095-7103&rft.coden=JCISA5&rft_id=info:doi/10.1016/j.jcis.2010.08.085&rft_dat=%3Cproquest_cross%3E759131257%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=759131257&rft_id=info:pmid/20887996&rft_els_id=S002197971001009X&rfr_iscdi=true