Partial intensity approach for quantitative analysis of reflection-electron-energy-loss spectra
We have considered a formalism, known as partial intensity approach (PIA), previously developed to quantitatively analyze reflection electron energy loss (REEL) spectra [1,2]. The aim of the approach is, in particular, to recover the single scattering distribution of energy losses and to separate it...
Gespeichert in:
Veröffentlicht in: | Surface science 2011-08, Vol.605 (15), p.1565-1573 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1573 |
---|---|
container_issue | 15 |
container_start_page | 1565 |
container_title | Surface science |
container_volume | 605 |
creator | Calliari, L. Filippi, M. A. Varfolomeev |
description | We have considered a formalism, known as partial intensity approach (PIA), previously developed to quantitatively analyze reflection electron energy loss (REEL) spectra [1,2]. The aim of the approach is, in particular, to recover the single scattering distribution of energy losses and to separate it into bulk and surface contributions, respectively referred to as the differential inverse inelastic mean free path (DIIMFP) and the differential surface excitation parameter (DSEP). As compared to [1] and [2], we have implemented a modified approach, and we have applied it to the specific geometry of the cylindrical mirror analyzer (CMA), used to acquire the REEL spectra shown here. Silicon, a material with well-defined surface and bulk plasmons, is taken as a case study to investigate the approach as a function of electron energy over the energy range typical of REELS, i.e. from 250
eV to 2
keV. Our goal is, on the one hand, to examine possible limits for the applicability of the approach and, on the other hand, to test a basic assumption of the PIA, namely that a unique DIIMFP and a unique DSEP account for REEL spectra, whatever the acquisition conditions (i.e. electron energy or angle of surface crossing) are. We find that a minimum energy exists below which the PIA cannot be applied and that the assumption of REEL spectra accounted for by unique DIIMFP and DSEP is indeed an approximation.
► Partial Intensity Approach (PIA) applied to reflection electron energy loss spectra. ► Differential inverse inelastic mean free path (DIIMFP) vs. electron energy. ► Differential surface excitation parameter (DSEP) vs. electron energy. ► DIIMFP and DSEP change in shape with electron energy. ► The electron penetration depth must exceed the surface scattering zone. |
doi_str_mv | 10.1016/j.susc.2011.05.031 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901677868</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0039602811002214</els_id><sourcerecordid>901677868</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-d262f926de0c90a39c22654dc17557a7298583bf741c98d0a675477e5c6c54be3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU-5eWpN0iZpwIss_oMFPeg5ZNOpZumm3SRd2G9vynp2LjMM84b3fgjdUlJSQsX9toxTtCUjlJaEl6SiZ2hBG6kKJnlzjhaEVKoQhDWX6CrGLclVK75A-sOE5EyPnU_go0tHbMYxDMb-4G4IeD8Zn1wyyR0AG2_6Y3QRDx0O0PVgkxt8AfMQ5sFD-D4W_RAjjuO8NNfoojN9hJu_vkRfz0-fq9di_f7ytnpcF7aqWCpaJlinmGiBWEVMpSxjgtetpZJzaSRTDW-qTSdralXTEiMkr6UEboXl9QaqJbo7_c3e9xPEpHcuWuh742GYolaZkpSNaPIlO13akH3mGHoMbmfCUVOiZ5h6q2eYeoapCdcZZhY9nESQMxwcBB2tA2-hdSHn1O3g_pP_AsVof4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901677868</pqid></control><display><type>article</type><title>Partial intensity approach for quantitative analysis of reflection-electron-energy-loss spectra</title><source>Access via ScienceDirect (Elsevier)</source><creator>Calliari, L. ; Filippi, M. ; A. Varfolomeev</creator><creatorcontrib>Calliari, L. ; Filippi, M. ; A. Varfolomeev</creatorcontrib><description>We have considered a formalism, known as partial intensity approach (PIA), previously developed to quantitatively analyze reflection electron energy loss (REEL) spectra [1,2]. The aim of the approach is, in particular, to recover the single scattering distribution of energy losses and to separate it into bulk and surface contributions, respectively referred to as the differential inverse inelastic mean free path (DIIMFP) and the differential surface excitation parameter (DSEP). As compared to [1] and [2], we have implemented a modified approach, and we have applied it to the specific geometry of the cylindrical mirror analyzer (CMA), used to acquire the REEL spectra shown here. Silicon, a material with well-defined surface and bulk plasmons, is taken as a case study to investigate the approach as a function of electron energy over the energy range typical of REELS, i.e. from 250
eV to 2
keV. Our goal is, on the one hand, to examine possible limits for the applicability of the approach and, on the other hand, to test a basic assumption of the PIA, namely that a unique DIIMFP and a unique DSEP account for REEL spectra, whatever the acquisition conditions (i.e. electron energy or angle of surface crossing) are. We find that a minimum energy exists below which the PIA cannot be applied and that the assumption of REEL spectra accounted for by unique DIIMFP and DSEP is indeed an approximation.
► Partial Intensity Approach (PIA) applied to reflection electron energy loss spectra. ► Differential inverse inelastic mean free path (DIIMFP) vs. electron energy. ► Differential surface excitation parameter (DSEP) vs. electron energy. ► DIIMFP and DSEP change in shape with electron energy. ► The electron penetration depth must exceed the surface scattering zone.</description><identifier>ISSN: 0039-6028</identifier><identifier>EISSN: 1879-2758</identifier><identifier>DOI: 10.1016/j.susc.2011.05.031</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Approximation ; Electron energy ; Electron energy loss spectroscopy (EELS) ; Electron–solid interactions ; Formalism ; Inverse ; Mean free path ; Plasmons ; Quantitative analysis ; Reels ; Silicon ; Solid–gas interfaces ; Spectra</subject><ispartof>Surface science, 2011-08, Vol.605 (15), p.1565-1573</ispartof><rights>2011 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-d262f926de0c90a39c22654dc17557a7298583bf741c98d0a675477e5c6c54be3</citedby><cites>FETCH-LOGICAL-c332t-d262f926de0c90a39c22654dc17557a7298583bf741c98d0a675477e5c6c54be3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.susc.2011.05.031$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Calliari, L.</creatorcontrib><creatorcontrib>Filippi, M.</creatorcontrib><creatorcontrib>A. Varfolomeev</creatorcontrib><title>Partial intensity approach for quantitative analysis of reflection-electron-energy-loss spectra</title><title>Surface science</title><description>We have considered a formalism, known as partial intensity approach (PIA), previously developed to quantitatively analyze reflection electron energy loss (REEL) spectra [1,2]. The aim of the approach is, in particular, to recover the single scattering distribution of energy losses and to separate it into bulk and surface contributions, respectively referred to as the differential inverse inelastic mean free path (DIIMFP) and the differential surface excitation parameter (DSEP). As compared to [1] and [2], we have implemented a modified approach, and we have applied it to the specific geometry of the cylindrical mirror analyzer (CMA), used to acquire the REEL spectra shown here. Silicon, a material with well-defined surface and bulk plasmons, is taken as a case study to investigate the approach as a function of electron energy over the energy range typical of REELS, i.e. from 250
eV to 2
keV. Our goal is, on the one hand, to examine possible limits for the applicability of the approach and, on the other hand, to test a basic assumption of the PIA, namely that a unique DIIMFP and a unique DSEP account for REEL spectra, whatever the acquisition conditions (i.e. electron energy or angle of surface crossing) are. We find that a minimum energy exists below which the PIA cannot be applied and that the assumption of REEL spectra accounted for by unique DIIMFP and DSEP is indeed an approximation.
► Partial Intensity Approach (PIA) applied to reflection electron energy loss spectra. ► Differential inverse inelastic mean free path (DIIMFP) vs. electron energy. ► Differential surface excitation parameter (DSEP) vs. electron energy. ► DIIMFP and DSEP change in shape with electron energy. ► The electron penetration depth must exceed the surface scattering zone.</description><subject>Approximation</subject><subject>Electron energy</subject><subject>Electron energy loss spectroscopy (EELS)</subject><subject>Electron–solid interactions</subject><subject>Formalism</subject><subject>Inverse</subject><subject>Mean free path</subject><subject>Plasmons</subject><subject>Quantitative analysis</subject><subject>Reels</subject><subject>Silicon</subject><subject>Solid–gas interfaces</subject><subject>Spectra</subject><issn>0039-6028</issn><issn>1879-2758</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AU-5eWpN0iZpwIss_oMFPeg5ZNOpZumm3SRd2G9vynp2LjMM84b3fgjdUlJSQsX9toxTtCUjlJaEl6SiZ2hBG6kKJnlzjhaEVKoQhDWX6CrGLclVK75A-sOE5EyPnU_go0tHbMYxDMb-4G4IeD8Zn1wyyR0AG2_6Y3QRDx0O0PVgkxt8AfMQ5sFD-D4W_RAjjuO8NNfoojN9hJu_vkRfz0-fq9di_f7ytnpcF7aqWCpaJlinmGiBWEVMpSxjgtetpZJzaSRTDW-qTSdralXTEiMkr6UEboXl9QaqJbo7_c3e9xPEpHcuWuh742GYolaZkpSNaPIlO13akH3mGHoMbmfCUVOiZ5h6q2eYeoapCdcZZhY9nESQMxwcBB2tA2-hdSHn1O3g_pP_AsVof4w</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Calliari, L.</creator><creator>Filippi, M.</creator><creator>A. Varfolomeev</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20110801</creationdate><title>Partial intensity approach for quantitative analysis of reflection-electron-energy-loss spectra</title><author>Calliari, L. ; Filippi, M. ; A. Varfolomeev</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-d262f926de0c90a39c22654dc17557a7298583bf741c98d0a675477e5c6c54be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Approximation</topic><topic>Electron energy</topic><topic>Electron energy loss spectroscopy (EELS)</topic><topic>Electron–solid interactions</topic><topic>Formalism</topic><topic>Inverse</topic><topic>Mean free path</topic><topic>Plasmons</topic><topic>Quantitative analysis</topic><topic>Reels</topic><topic>Silicon</topic><topic>Solid–gas interfaces</topic><topic>Spectra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Calliari, L.</creatorcontrib><creatorcontrib>Filippi, M.</creatorcontrib><creatorcontrib>A. Varfolomeev</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Surface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Calliari, L.</au><au>Filippi, M.</au><au>A. Varfolomeev</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Partial intensity approach for quantitative analysis of reflection-electron-energy-loss spectra</atitle><jtitle>Surface science</jtitle><date>2011-08-01</date><risdate>2011</risdate><volume>605</volume><issue>15</issue><spage>1565</spage><epage>1573</epage><pages>1565-1573</pages><issn>0039-6028</issn><eissn>1879-2758</eissn><abstract>We have considered a formalism, known as partial intensity approach (PIA), previously developed to quantitatively analyze reflection electron energy loss (REEL) spectra [1,2]. The aim of the approach is, in particular, to recover the single scattering distribution of energy losses and to separate it into bulk and surface contributions, respectively referred to as the differential inverse inelastic mean free path (DIIMFP) and the differential surface excitation parameter (DSEP). As compared to [1] and [2], we have implemented a modified approach, and we have applied it to the specific geometry of the cylindrical mirror analyzer (CMA), used to acquire the REEL spectra shown here. Silicon, a material with well-defined surface and bulk plasmons, is taken as a case study to investigate the approach as a function of electron energy over the energy range typical of REELS, i.e. from 250
eV to 2
keV. Our goal is, on the one hand, to examine possible limits for the applicability of the approach and, on the other hand, to test a basic assumption of the PIA, namely that a unique DIIMFP and a unique DSEP account for REEL spectra, whatever the acquisition conditions (i.e. electron energy or angle of surface crossing) are. We find that a minimum energy exists below which the PIA cannot be applied and that the assumption of REEL spectra accounted for by unique DIIMFP and DSEP is indeed an approximation.
► Partial Intensity Approach (PIA) applied to reflection electron energy loss spectra. ► Differential inverse inelastic mean free path (DIIMFP) vs. electron energy. ► Differential surface excitation parameter (DSEP) vs. electron energy. ► DIIMFP and DSEP change in shape with electron energy. ► The electron penetration depth must exceed the surface scattering zone.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.susc.2011.05.031</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0039-6028 |
ispartof | Surface science, 2011-08, Vol.605 (15), p.1565-1573 |
issn | 0039-6028 1879-2758 |
language | eng |
recordid | cdi_proquest_miscellaneous_901677868 |
source | Access via ScienceDirect (Elsevier) |
subjects | Approximation Electron energy Electron energy loss spectroscopy (EELS) Electron–solid interactions Formalism Inverse Mean free path Plasmons Quantitative analysis Reels Silicon Solid–gas interfaces Spectra |
title | Partial intensity approach for quantitative analysis of reflection-electron-energy-loss spectra |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T21%3A47%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Partial%20intensity%20approach%20for%20quantitative%20analysis%20of%20reflection-electron-energy-loss%20spectra&rft.jtitle=Surface%20science&rft.au=Calliari,%20L.&rft.date=2011-08-01&rft.volume=605&rft.issue=15&rft.spage=1565&rft.epage=1573&rft.pages=1565-1573&rft.issn=0039-6028&rft.eissn=1879-2758&rft_id=info:doi/10.1016/j.susc.2011.05.031&rft_dat=%3Cproquest_cross%3E901677868%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=901677868&rft_id=info:pmid/&rft_els_id=S0039602811002214&rfr_iscdi=true |