Partial intensity approach for quantitative analysis of reflection-electron-energy-loss spectra

We have considered a formalism, known as partial intensity approach (PIA), previously developed to quantitatively analyze reflection electron energy loss (REEL) spectra [1,2]. The aim of the approach is, in particular, to recover the single scattering distribution of energy losses and to separate it...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surface science 2011-08, Vol.605 (15), p.1565-1573
Hauptverfasser: Calliari, L., Filippi, M., A. Varfolomeev
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1573
container_issue 15
container_start_page 1565
container_title Surface science
container_volume 605
creator Calliari, L.
Filippi, M.
A. Varfolomeev
description We have considered a formalism, known as partial intensity approach (PIA), previously developed to quantitatively analyze reflection electron energy loss (REEL) spectra [1,2]. The aim of the approach is, in particular, to recover the single scattering distribution of energy losses and to separate it into bulk and surface contributions, respectively referred to as the differential inverse inelastic mean free path (DIIMFP) and the differential surface excitation parameter (DSEP). As compared to [1] and [2], we have implemented a modified approach, and we have applied it to the specific geometry of the cylindrical mirror analyzer (CMA), used to acquire the REEL spectra shown here. Silicon, a material with well-defined surface and bulk plasmons, is taken as a case study to investigate the approach as a function of electron energy over the energy range typical of REELS, i.e. from 250 eV to 2 keV. Our goal is, on the one hand, to examine possible limits for the applicability of the approach and, on the other hand, to test a basic assumption of the PIA, namely that a unique DIIMFP and a unique DSEP account for REEL spectra, whatever the acquisition conditions (i.e. electron energy or angle of surface crossing) are. We find that a minimum energy exists below which the PIA cannot be applied and that the assumption of REEL spectra accounted for by unique DIIMFP and DSEP is indeed an approximation. ► Partial Intensity Approach (PIA) applied to reflection electron energy loss spectra. ► Differential inverse inelastic mean free path (DIIMFP) vs. electron energy. ► Differential surface excitation parameter (DSEP) vs. electron energy. ► DIIMFP and DSEP change in shape with electron energy. ► The electron penetration depth must exceed the surface scattering zone.
doi_str_mv 10.1016/j.susc.2011.05.031
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901677868</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0039602811002214</els_id><sourcerecordid>901677868</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-d262f926de0c90a39c22654dc17557a7298583bf741c98d0a675477e5c6c54be3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU-5eWpN0iZpwIss_oMFPeg5ZNOpZumm3SRd2G9vynp2LjMM84b3fgjdUlJSQsX9toxTtCUjlJaEl6SiZ2hBG6kKJnlzjhaEVKoQhDWX6CrGLclVK75A-sOE5EyPnU_go0tHbMYxDMb-4G4IeD8Zn1wyyR0AG2_6Y3QRDx0O0PVgkxt8AfMQ5sFD-D4W_RAjjuO8NNfoojN9hJu_vkRfz0-fq9di_f7ytnpcF7aqWCpaJlinmGiBWEVMpSxjgtetpZJzaSRTDW-qTSdralXTEiMkr6UEboXl9QaqJbo7_c3e9xPEpHcuWuh742GYolaZkpSNaPIlO13akH3mGHoMbmfCUVOiZ5h6q2eYeoapCdcZZhY9nESQMxwcBB2tA2-hdSHn1O3g_pP_AsVof4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901677868</pqid></control><display><type>article</type><title>Partial intensity approach for quantitative analysis of reflection-electron-energy-loss spectra</title><source>Access via ScienceDirect (Elsevier)</source><creator>Calliari, L. ; Filippi, M. ; A. Varfolomeev</creator><creatorcontrib>Calliari, L. ; Filippi, M. ; A. Varfolomeev</creatorcontrib><description>We have considered a formalism, known as partial intensity approach (PIA), previously developed to quantitatively analyze reflection electron energy loss (REEL) spectra [1,2]. The aim of the approach is, in particular, to recover the single scattering distribution of energy losses and to separate it into bulk and surface contributions, respectively referred to as the differential inverse inelastic mean free path (DIIMFP) and the differential surface excitation parameter (DSEP). As compared to [1] and [2], we have implemented a modified approach, and we have applied it to the specific geometry of the cylindrical mirror analyzer (CMA), used to acquire the REEL spectra shown here. Silicon, a material with well-defined surface and bulk plasmons, is taken as a case study to investigate the approach as a function of electron energy over the energy range typical of REELS, i.e. from 250 eV to 2 keV. Our goal is, on the one hand, to examine possible limits for the applicability of the approach and, on the other hand, to test a basic assumption of the PIA, namely that a unique DIIMFP and a unique DSEP account for REEL spectra, whatever the acquisition conditions (i.e. electron energy or angle of surface crossing) are. We find that a minimum energy exists below which the PIA cannot be applied and that the assumption of REEL spectra accounted for by unique DIIMFP and DSEP is indeed an approximation. ► Partial Intensity Approach (PIA) applied to reflection electron energy loss spectra. ► Differential inverse inelastic mean free path (DIIMFP) vs. electron energy. ► Differential surface excitation parameter (DSEP) vs. electron energy. ► DIIMFP and DSEP change in shape with electron energy. ► The electron penetration depth must exceed the surface scattering zone.</description><identifier>ISSN: 0039-6028</identifier><identifier>EISSN: 1879-2758</identifier><identifier>DOI: 10.1016/j.susc.2011.05.031</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Approximation ; Electron energy ; Electron energy loss spectroscopy (EELS) ; Electron–solid interactions ; Formalism ; Inverse ; Mean free path ; Plasmons ; Quantitative analysis ; Reels ; Silicon ; Solid–gas interfaces ; Spectra</subject><ispartof>Surface science, 2011-08, Vol.605 (15), p.1565-1573</ispartof><rights>2011 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-d262f926de0c90a39c22654dc17557a7298583bf741c98d0a675477e5c6c54be3</citedby><cites>FETCH-LOGICAL-c332t-d262f926de0c90a39c22654dc17557a7298583bf741c98d0a675477e5c6c54be3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.susc.2011.05.031$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Calliari, L.</creatorcontrib><creatorcontrib>Filippi, M.</creatorcontrib><creatorcontrib>A. Varfolomeev</creatorcontrib><title>Partial intensity approach for quantitative analysis of reflection-electron-energy-loss spectra</title><title>Surface science</title><description>We have considered a formalism, known as partial intensity approach (PIA), previously developed to quantitatively analyze reflection electron energy loss (REEL) spectra [1,2]. The aim of the approach is, in particular, to recover the single scattering distribution of energy losses and to separate it into bulk and surface contributions, respectively referred to as the differential inverse inelastic mean free path (DIIMFP) and the differential surface excitation parameter (DSEP). As compared to [1] and [2], we have implemented a modified approach, and we have applied it to the specific geometry of the cylindrical mirror analyzer (CMA), used to acquire the REEL spectra shown here. Silicon, a material with well-defined surface and bulk plasmons, is taken as a case study to investigate the approach as a function of electron energy over the energy range typical of REELS, i.e. from 250 eV to 2 keV. Our goal is, on the one hand, to examine possible limits for the applicability of the approach and, on the other hand, to test a basic assumption of the PIA, namely that a unique DIIMFP and a unique DSEP account for REEL spectra, whatever the acquisition conditions (i.e. electron energy or angle of surface crossing) are. We find that a minimum energy exists below which the PIA cannot be applied and that the assumption of REEL spectra accounted for by unique DIIMFP and DSEP is indeed an approximation. ► Partial Intensity Approach (PIA) applied to reflection electron energy loss spectra. ► Differential inverse inelastic mean free path (DIIMFP) vs. electron energy. ► Differential surface excitation parameter (DSEP) vs. electron energy. ► DIIMFP and DSEP change in shape with electron energy. ► The electron penetration depth must exceed the surface scattering zone.</description><subject>Approximation</subject><subject>Electron energy</subject><subject>Electron energy loss spectroscopy (EELS)</subject><subject>Electron–solid interactions</subject><subject>Formalism</subject><subject>Inverse</subject><subject>Mean free path</subject><subject>Plasmons</subject><subject>Quantitative analysis</subject><subject>Reels</subject><subject>Silicon</subject><subject>Solid–gas interfaces</subject><subject>Spectra</subject><issn>0039-6028</issn><issn>1879-2758</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AU-5eWpN0iZpwIss_oMFPeg5ZNOpZumm3SRd2G9vynp2LjMM84b3fgjdUlJSQsX9toxTtCUjlJaEl6SiZ2hBG6kKJnlzjhaEVKoQhDWX6CrGLclVK75A-sOE5EyPnU_go0tHbMYxDMb-4G4IeD8Zn1wyyR0AG2_6Y3QRDx0O0PVgkxt8AfMQ5sFD-D4W_RAjjuO8NNfoojN9hJu_vkRfz0-fq9di_f7ytnpcF7aqWCpaJlinmGiBWEVMpSxjgtetpZJzaSRTDW-qTSdralXTEiMkr6UEboXl9QaqJbo7_c3e9xPEpHcuWuh742GYolaZkpSNaPIlO13akH3mGHoMbmfCUVOiZ5h6q2eYeoapCdcZZhY9nESQMxwcBB2tA2-hdSHn1O3g_pP_AsVof4w</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Calliari, L.</creator><creator>Filippi, M.</creator><creator>A. Varfolomeev</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20110801</creationdate><title>Partial intensity approach for quantitative analysis of reflection-electron-energy-loss spectra</title><author>Calliari, L. ; Filippi, M. ; A. Varfolomeev</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-d262f926de0c90a39c22654dc17557a7298583bf741c98d0a675477e5c6c54be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Approximation</topic><topic>Electron energy</topic><topic>Electron energy loss spectroscopy (EELS)</topic><topic>Electron–solid interactions</topic><topic>Formalism</topic><topic>Inverse</topic><topic>Mean free path</topic><topic>Plasmons</topic><topic>Quantitative analysis</topic><topic>Reels</topic><topic>Silicon</topic><topic>Solid–gas interfaces</topic><topic>Spectra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Calliari, L.</creatorcontrib><creatorcontrib>Filippi, M.</creatorcontrib><creatorcontrib>A. Varfolomeev</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Surface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Calliari, L.</au><au>Filippi, M.</au><au>A. Varfolomeev</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Partial intensity approach for quantitative analysis of reflection-electron-energy-loss spectra</atitle><jtitle>Surface science</jtitle><date>2011-08-01</date><risdate>2011</risdate><volume>605</volume><issue>15</issue><spage>1565</spage><epage>1573</epage><pages>1565-1573</pages><issn>0039-6028</issn><eissn>1879-2758</eissn><abstract>We have considered a formalism, known as partial intensity approach (PIA), previously developed to quantitatively analyze reflection electron energy loss (REEL) spectra [1,2]. The aim of the approach is, in particular, to recover the single scattering distribution of energy losses and to separate it into bulk and surface contributions, respectively referred to as the differential inverse inelastic mean free path (DIIMFP) and the differential surface excitation parameter (DSEP). As compared to [1] and [2], we have implemented a modified approach, and we have applied it to the specific geometry of the cylindrical mirror analyzer (CMA), used to acquire the REEL spectra shown here. Silicon, a material with well-defined surface and bulk plasmons, is taken as a case study to investigate the approach as a function of electron energy over the energy range typical of REELS, i.e. from 250 eV to 2 keV. Our goal is, on the one hand, to examine possible limits for the applicability of the approach and, on the other hand, to test a basic assumption of the PIA, namely that a unique DIIMFP and a unique DSEP account for REEL spectra, whatever the acquisition conditions (i.e. electron energy or angle of surface crossing) are. We find that a minimum energy exists below which the PIA cannot be applied and that the assumption of REEL spectra accounted for by unique DIIMFP and DSEP is indeed an approximation. ► Partial Intensity Approach (PIA) applied to reflection electron energy loss spectra. ► Differential inverse inelastic mean free path (DIIMFP) vs. electron energy. ► Differential surface excitation parameter (DSEP) vs. electron energy. ► DIIMFP and DSEP change in shape with electron energy. ► The electron penetration depth must exceed the surface scattering zone.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.susc.2011.05.031</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0039-6028
ispartof Surface science, 2011-08, Vol.605 (15), p.1565-1573
issn 0039-6028
1879-2758
language eng
recordid cdi_proquest_miscellaneous_901677868
source Access via ScienceDirect (Elsevier)
subjects Approximation
Electron energy
Electron energy loss spectroscopy (EELS)
Electron–solid interactions
Formalism
Inverse
Mean free path
Plasmons
Quantitative analysis
Reels
Silicon
Solid–gas interfaces
Spectra
title Partial intensity approach for quantitative analysis of reflection-electron-energy-loss spectra
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T21%3A47%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Partial%20intensity%20approach%20for%20quantitative%20analysis%20of%20reflection-electron-energy-loss%20spectra&rft.jtitle=Surface%20science&rft.au=Calliari,%20L.&rft.date=2011-08-01&rft.volume=605&rft.issue=15&rft.spage=1565&rft.epage=1573&rft.pages=1565-1573&rft.issn=0039-6028&rft.eissn=1879-2758&rft_id=info:doi/10.1016/j.susc.2011.05.031&rft_dat=%3Cproquest_cross%3E901677868%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=901677868&rft_id=info:pmid/&rft_els_id=S0039602811002214&rfr_iscdi=true