Integral solutions for selected turbulent quantities of small-scale hydrogen leakage: A non-buoyant jet or momentum-dominated buoyant jet regime

In this paper, the integral method is used to derive a complete set of results and expressions for selected physical turbulent properties of a non-buoyant jet or momentum-dominated buoyant jet regime of small-scale hydrogen leakage. Several quantities of interest, including the cross-stream velocity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of hydrogen energy 2009-02, Vol.34 (3), p.1607-1612
Hauptverfasser: El-Amin, M.F., Kanayama, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1612
container_issue 3
container_start_page 1607
container_title International journal of hydrogen energy
container_volume 34
creator El-Amin, M.F.
Kanayama, H.
description In this paper, the integral method is used to derive a complete set of results and expressions for selected physical turbulent properties of a non-buoyant jet or momentum-dominated buoyant jet regime of small-scale hydrogen leakage. Several quantities of interest, including the cross-stream velocity, Reynolds stress, velocity-concentration correlation (radial flux), dominant turbulent kinetic energy production term, turbulent eddy viscosity and turbulent eddy diffusivity are obtained. In addition, the turbulent Schmidt number is estimated and the normalized jet-feed material density and the normalized momentum flux density are correlated. Throughout this paper, experimental results from Schefer et al. [Schefer RW, Houf WG, Williams TC. Investigation of small-scale unintended releases of hydrogen: momentum-dominated regime. Int J Hydrogen Energy 2008;33(21):6373–84] and other works for the momentum-dominated jet resulting from small-scale hydrogen leakage are used in the integral method. For a non-buoyant jet or momentum-dominated regime of a buoyant jet, both the centerline velocity and centerline concentration are proportional with z −1. The effects of buoyancy-generated momentum are assumed to be small, and the Reynolds number is sufficient for fully developed turbulent flow. The hydrogen–air momentum-dominated regime or non-buoyant jet is compared with the air–air jet as an example of non-buoyant jets. Good agreement was found between the current results and experimental results from the literature. In addition, the turbulent Schmidt number was shown to depend solely on the ratio of the momentum spread rate to the material spread rate.
doi_str_mv 10.1016/j.ijhydene.2008.11.067
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901673689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360319908016352</els_id><sourcerecordid>901673689</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-dd80882f720e2080f1a99d06ffcd8d2918beea82fe36d4638665940175478f103</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhSNEJYaWV0DeINgkXCcZ_7CiqvipVKkbWFue-HpwcOzWdirNW_SR8WgKYgWru_nOObrnNM1rCh0Fyt7PnZt_HAwG7HoA0VHaAePPmg0VXLbDKPjzZgMDg3agUr5oXuY8A1AOo9w0j9eh4D5pT3L0a3ExZGJjIhk9TgUNKWvarR5DIferDsUVh5lES_KivW_zpD2Smp7iHgPxqH_qPX4glyTE0O7WeKgaMmMh1XOJS_VZl9bExQV9dP-bSLh3C140Z1b7jK-e7nnz_fOnb1df25vbL9dXlzftNPKhtMYIEKK3vAfsQYClWkoDzNrJCNNLKnaIugI4MDOyQTC2lWP9ejtyYSkM583bk-9divcr5qIWlyf0XgeMa1ayVssHJmQl3_2TrE1KLsae84qyEzqlmHNCq-6SW3Q6KArqOJaa1e-x1HEsRamqY1Xhm6cMfazUJh0ml_-oe0pHgO22ch9PHNZqHhwmlSeHYULjUt1Lmej-F_ULAO6wqQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1709784277</pqid></control><display><type>article</type><title>Integral solutions for selected turbulent quantities of small-scale hydrogen leakage: A non-buoyant jet or momentum-dominated buoyant jet regime</title><source>Elsevier ScienceDirect Journals</source><creator>El-Amin, M.F. ; Kanayama, H.</creator><creatorcontrib>El-Amin, M.F. ; Kanayama, H.</creatorcontrib><description>In this paper, the integral method is used to derive a complete set of results and expressions for selected physical turbulent properties of a non-buoyant jet or momentum-dominated buoyant jet regime of small-scale hydrogen leakage. Several quantities of interest, including the cross-stream velocity, Reynolds stress, velocity-concentration correlation (radial flux), dominant turbulent kinetic energy production term, turbulent eddy viscosity and turbulent eddy diffusivity are obtained. In addition, the turbulent Schmidt number is estimated and the normalized jet-feed material density and the normalized momentum flux density are correlated. Throughout this paper, experimental results from Schefer et al. [Schefer RW, Houf WG, Williams TC. Investigation of small-scale unintended releases of hydrogen: momentum-dominated regime. Int J Hydrogen Energy 2008;33(21):6373–84] and other works for the momentum-dominated jet resulting from small-scale hydrogen leakage are used in the integral method. For a non-buoyant jet or momentum-dominated regime of a buoyant jet, both the centerline velocity and centerline concentration are proportional with z −1. The effects of buoyancy-generated momentum are assumed to be small, and the Reynolds number is sufficient for fully developed turbulent flow. The hydrogen–air momentum-dominated regime or non-buoyant jet is compared with the air–air jet as an example of non-buoyant jets. Good agreement was found between the current results and experimental results from the literature. In addition, the turbulent Schmidt number was shown to depend solely on the ratio of the momentum spread rate to the material spread rate.</description><identifier>ISSN: 0360-3199</identifier><identifier>EISSN: 1879-3487</identifier><identifier>DOI: 10.1016/j.ijhydene.2008.11.067</identifier><identifier>CODEN: IJHEDX</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Aerodynamics ; Alternative fuels. Production and utilization ; Applied sciences ; Buoyancy ; Combustion of gaseous fuels ; Combustion. Flame ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Fluid dynamics ; Fluid flow ; Fuels ; Hydrogen ; Hydrogen leakage ; Integral method ; Integrals ; Leakage ; Momentum-dominated regime ; Non-buoyant jet ; Theoretical studies. Data and constants. Metering ; Turbulence ; Turbulent flow ; Turbulent Schmidt number</subject><ispartof>International journal of hydrogen energy, 2009-02, Vol.34 (3), p.1607-1612</ispartof><rights>2008 International Association for Hydrogen Energy</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-dd80882f720e2080f1a99d06ffcd8d2918beea82fe36d4638665940175478f103</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijhydene.2008.11.067$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21140055$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>El-Amin, M.F.</creatorcontrib><creatorcontrib>Kanayama, H.</creatorcontrib><title>Integral solutions for selected turbulent quantities of small-scale hydrogen leakage: A non-buoyant jet or momentum-dominated buoyant jet regime</title><title>International journal of hydrogen energy</title><description>In this paper, the integral method is used to derive a complete set of results and expressions for selected physical turbulent properties of a non-buoyant jet or momentum-dominated buoyant jet regime of small-scale hydrogen leakage. Several quantities of interest, including the cross-stream velocity, Reynolds stress, velocity-concentration correlation (radial flux), dominant turbulent kinetic energy production term, turbulent eddy viscosity and turbulent eddy diffusivity are obtained. In addition, the turbulent Schmidt number is estimated and the normalized jet-feed material density and the normalized momentum flux density are correlated. Throughout this paper, experimental results from Schefer et al. [Schefer RW, Houf WG, Williams TC. Investigation of small-scale unintended releases of hydrogen: momentum-dominated regime. Int J Hydrogen Energy 2008;33(21):6373–84] and other works for the momentum-dominated jet resulting from small-scale hydrogen leakage are used in the integral method. For a non-buoyant jet or momentum-dominated regime of a buoyant jet, both the centerline velocity and centerline concentration are proportional with z −1. The effects of buoyancy-generated momentum are assumed to be small, and the Reynolds number is sufficient for fully developed turbulent flow. The hydrogen–air momentum-dominated regime or non-buoyant jet is compared with the air–air jet as an example of non-buoyant jets. Good agreement was found between the current results and experimental results from the literature. In addition, the turbulent Schmidt number was shown to depend solely on the ratio of the momentum spread rate to the material spread rate.</description><subject>Aerodynamics</subject><subject>Alternative fuels. Production and utilization</subject><subject>Applied sciences</subject><subject>Buoyancy</subject><subject>Combustion of gaseous fuels</subject><subject>Combustion. Flame</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fuels</subject><subject>Hydrogen</subject><subject>Hydrogen leakage</subject><subject>Integral method</subject><subject>Integrals</subject><subject>Leakage</subject><subject>Momentum-dominated regime</subject><subject>Non-buoyant jet</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>Turbulent Schmidt number</subject><issn>0360-3199</issn><issn>1879-3487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkc1u1DAUhSNEJYaWV0DeINgkXCcZ_7CiqvipVKkbWFue-HpwcOzWdirNW_SR8WgKYgWru_nOObrnNM1rCh0Fyt7PnZt_HAwG7HoA0VHaAePPmg0VXLbDKPjzZgMDg3agUr5oXuY8A1AOo9w0j9eh4D5pT3L0a3ExZGJjIhk9TgUNKWvarR5DIferDsUVh5lES_KivW_zpD2Smp7iHgPxqH_qPX4glyTE0O7WeKgaMmMh1XOJS_VZl9bExQV9dP-bSLh3C140Z1b7jK-e7nnz_fOnb1df25vbL9dXlzftNPKhtMYIEKK3vAfsQYClWkoDzNrJCNNLKnaIugI4MDOyQTC2lWP9ejtyYSkM583bk-9divcr5qIWlyf0XgeMa1ayVssHJmQl3_2TrE1KLsae84qyEzqlmHNCq-6SW3Q6KArqOJaa1e-x1HEsRamqY1Xhm6cMfazUJh0ml_-oe0pHgO22ch9PHNZqHhwmlSeHYULjUt1Lmej-F_ULAO6wqQ</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>El-Amin, M.F.</creator><creator>Kanayama, H.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20090201</creationdate><title>Integral solutions for selected turbulent quantities of small-scale hydrogen leakage: A non-buoyant jet or momentum-dominated buoyant jet regime</title><author>El-Amin, M.F. ; Kanayama, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-dd80882f720e2080f1a99d06ffcd8d2918beea82fe36d4638665940175478f103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Aerodynamics</topic><topic>Alternative fuels. Production and utilization</topic><topic>Applied sciences</topic><topic>Buoyancy</topic><topic>Combustion of gaseous fuels</topic><topic>Combustion. Flame</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fuels</topic><topic>Hydrogen</topic><topic>Hydrogen leakage</topic><topic>Integral method</topic><topic>Integrals</topic><topic>Leakage</topic><topic>Momentum-dominated regime</topic><topic>Non-buoyant jet</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>Turbulent Schmidt number</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El-Amin, M.F.</creatorcontrib><creatorcontrib>Kanayama, H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>International journal of hydrogen energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El-Amin, M.F.</au><au>Kanayama, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integral solutions for selected turbulent quantities of small-scale hydrogen leakage: A non-buoyant jet or momentum-dominated buoyant jet regime</atitle><jtitle>International journal of hydrogen energy</jtitle><date>2009-02-01</date><risdate>2009</risdate><volume>34</volume><issue>3</issue><spage>1607</spage><epage>1612</epage><pages>1607-1612</pages><issn>0360-3199</issn><eissn>1879-3487</eissn><coden>IJHEDX</coden><abstract>In this paper, the integral method is used to derive a complete set of results and expressions for selected physical turbulent properties of a non-buoyant jet or momentum-dominated buoyant jet regime of small-scale hydrogen leakage. Several quantities of interest, including the cross-stream velocity, Reynolds stress, velocity-concentration correlation (radial flux), dominant turbulent kinetic energy production term, turbulent eddy viscosity and turbulent eddy diffusivity are obtained. In addition, the turbulent Schmidt number is estimated and the normalized jet-feed material density and the normalized momentum flux density are correlated. Throughout this paper, experimental results from Schefer et al. [Schefer RW, Houf WG, Williams TC. Investigation of small-scale unintended releases of hydrogen: momentum-dominated regime. Int J Hydrogen Energy 2008;33(21):6373–84] and other works for the momentum-dominated jet resulting from small-scale hydrogen leakage are used in the integral method. For a non-buoyant jet or momentum-dominated regime of a buoyant jet, both the centerline velocity and centerline concentration are proportional with z −1. The effects of buoyancy-generated momentum are assumed to be small, and the Reynolds number is sufficient for fully developed turbulent flow. The hydrogen–air momentum-dominated regime or non-buoyant jet is compared with the air–air jet as an example of non-buoyant jets. Good agreement was found between the current results and experimental results from the literature. In addition, the turbulent Schmidt number was shown to depend solely on the ratio of the momentum spread rate to the material spread rate.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijhydene.2008.11.067</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0360-3199
ispartof International journal of hydrogen energy, 2009-02, Vol.34 (3), p.1607-1612
issn 0360-3199
1879-3487
language eng
recordid cdi_proquest_miscellaneous_901673689
source Elsevier ScienceDirect Journals
subjects Aerodynamics
Alternative fuels. Production and utilization
Applied sciences
Buoyancy
Combustion of gaseous fuels
Combustion. Flame
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Fluid dynamics
Fluid flow
Fuels
Hydrogen
Hydrogen leakage
Integral method
Integrals
Leakage
Momentum-dominated regime
Non-buoyant jet
Theoretical studies. Data and constants. Metering
Turbulence
Turbulent flow
Turbulent Schmidt number
title Integral solutions for selected turbulent quantities of small-scale hydrogen leakage: A non-buoyant jet or momentum-dominated buoyant jet regime
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T01%3A41%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integral%20solutions%20for%20selected%20turbulent%20quantities%20of%20small-scale%20hydrogen%20leakage:%20A%20non-buoyant%20jet%20or%20momentum-dominated%20buoyant%20jet%20regime&rft.jtitle=International%20journal%20of%20hydrogen%20energy&rft.au=El-Amin,%20M.F.&rft.date=2009-02-01&rft.volume=34&rft.issue=3&rft.spage=1607&rft.epage=1612&rft.pages=1607-1612&rft.issn=0360-3199&rft.eissn=1879-3487&rft.coden=IJHEDX&rft_id=info:doi/10.1016/j.ijhydene.2008.11.067&rft_dat=%3Cproquest_cross%3E901673689%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1709784277&rft_id=info:pmid/&rft_els_id=S0360319908016352&rfr_iscdi=true