Integral solutions for selected turbulent quantities of small-scale hydrogen leakage: A non-buoyant jet or momentum-dominated buoyant jet regime
In this paper, the integral method is used to derive a complete set of results and expressions for selected physical turbulent properties of a non-buoyant jet or momentum-dominated buoyant jet regime of small-scale hydrogen leakage. Several quantities of interest, including the cross-stream velocity...
Gespeichert in:
Veröffentlicht in: | International journal of hydrogen energy 2009-02, Vol.34 (3), p.1607-1612 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1612 |
---|---|
container_issue | 3 |
container_start_page | 1607 |
container_title | International journal of hydrogen energy |
container_volume | 34 |
creator | El-Amin, M.F. Kanayama, H. |
description | In this paper, the integral method is used to derive a complete set of results and expressions for selected physical turbulent properties of a non-buoyant jet or momentum-dominated buoyant jet regime of small-scale hydrogen leakage. Several quantities of interest, including the cross-stream velocity, Reynolds stress, velocity-concentration correlation (radial flux), dominant turbulent kinetic energy production term, turbulent eddy viscosity and turbulent eddy diffusivity are obtained. In addition, the turbulent Schmidt number is estimated and the normalized jet-feed material density and the normalized momentum flux density are correlated. Throughout this paper, experimental results from Schefer et al. [Schefer RW, Houf WG, Williams TC. Investigation of small-scale unintended releases of hydrogen: momentum-dominated regime. Int J Hydrogen Energy 2008;33(21):6373–84] and other works for the momentum-dominated jet resulting from small-scale hydrogen leakage are used in the integral method. For a non-buoyant jet or momentum-dominated regime of a buoyant jet, both the centerline velocity and centerline concentration are proportional with
z
−1. The effects of buoyancy-generated momentum are assumed to be small, and the Reynolds number is sufficient for fully developed turbulent flow. The hydrogen–air momentum-dominated regime or non-buoyant jet is compared with the air–air jet as an example of non-buoyant jets. Good agreement was found between the current results and experimental results from the literature. In addition, the turbulent Schmidt number was shown to depend solely on the ratio of the momentum spread rate to the material spread rate. |
doi_str_mv | 10.1016/j.ijhydene.2008.11.067 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901673689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360319908016352</els_id><sourcerecordid>901673689</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-dd80882f720e2080f1a99d06ffcd8d2918beea82fe36d4638665940175478f103</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhSNEJYaWV0DeINgkXCcZ_7CiqvipVKkbWFue-HpwcOzWdirNW_SR8WgKYgWru_nOObrnNM1rCh0Fyt7PnZt_HAwG7HoA0VHaAePPmg0VXLbDKPjzZgMDg3agUr5oXuY8A1AOo9w0j9eh4D5pT3L0a3ExZGJjIhk9TgUNKWvarR5DIferDsUVh5lES_KivW_zpD2Smp7iHgPxqH_qPX4glyTE0O7WeKgaMmMh1XOJS_VZl9bExQV9dP-bSLh3C140Z1b7jK-e7nnz_fOnb1df25vbL9dXlzftNPKhtMYIEKK3vAfsQYClWkoDzNrJCNNLKnaIugI4MDOyQTC2lWP9ejtyYSkM583bk-9divcr5qIWlyf0XgeMa1ayVssHJmQl3_2TrE1KLsae84qyEzqlmHNCq-6SW3Q6KArqOJaa1e-x1HEsRamqY1Xhm6cMfazUJh0ml_-oe0pHgO22ch9PHNZqHhwmlSeHYULjUt1Lmej-F_ULAO6wqQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1709784277</pqid></control><display><type>article</type><title>Integral solutions for selected turbulent quantities of small-scale hydrogen leakage: A non-buoyant jet or momentum-dominated buoyant jet regime</title><source>Elsevier ScienceDirect Journals</source><creator>El-Amin, M.F. ; Kanayama, H.</creator><creatorcontrib>El-Amin, M.F. ; Kanayama, H.</creatorcontrib><description>In this paper, the integral method is used to derive a complete set of results and expressions for selected physical turbulent properties of a non-buoyant jet or momentum-dominated buoyant jet regime of small-scale hydrogen leakage. Several quantities of interest, including the cross-stream velocity, Reynolds stress, velocity-concentration correlation (radial flux), dominant turbulent kinetic energy production term, turbulent eddy viscosity and turbulent eddy diffusivity are obtained. In addition, the turbulent Schmidt number is estimated and the normalized jet-feed material density and the normalized momentum flux density are correlated. Throughout this paper, experimental results from Schefer et al. [Schefer RW, Houf WG, Williams TC. Investigation of small-scale unintended releases of hydrogen: momentum-dominated regime. Int J Hydrogen Energy 2008;33(21):6373–84] and other works for the momentum-dominated jet resulting from small-scale hydrogen leakage are used in the integral method. For a non-buoyant jet or momentum-dominated regime of a buoyant jet, both the centerline velocity and centerline concentration are proportional with
z
−1. The effects of buoyancy-generated momentum are assumed to be small, and the Reynolds number is sufficient for fully developed turbulent flow. The hydrogen–air momentum-dominated regime or non-buoyant jet is compared with the air–air jet as an example of non-buoyant jets. Good agreement was found between the current results and experimental results from the literature. In addition, the turbulent Schmidt number was shown to depend solely on the ratio of the momentum spread rate to the material spread rate.</description><identifier>ISSN: 0360-3199</identifier><identifier>EISSN: 1879-3487</identifier><identifier>DOI: 10.1016/j.ijhydene.2008.11.067</identifier><identifier>CODEN: IJHEDX</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Aerodynamics ; Alternative fuels. Production and utilization ; Applied sciences ; Buoyancy ; Combustion of gaseous fuels ; Combustion. Flame ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Fluid dynamics ; Fluid flow ; Fuels ; Hydrogen ; Hydrogen leakage ; Integral method ; Integrals ; Leakage ; Momentum-dominated regime ; Non-buoyant jet ; Theoretical studies. Data and constants. Metering ; Turbulence ; Turbulent flow ; Turbulent Schmidt number</subject><ispartof>International journal of hydrogen energy, 2009-02, Vol.34 (3), p.1607-1612</ispartof><rights>2008 International Association for Hydrogen Energy</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-dd80882f720e2080f1a99d06ffcd8d2918beea82fe36d4638665940175478f103</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijhydene.2008.11.067$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21140055$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>El-Amin, M.F.</creatorcontrib><creatorcontrib>Kanayama, H.</creatorcontrib><title>Integral solutions for selected turbulent quantities of small-scale hydrogen leakage: A non-buoyant jet or momentum-dominated buoyant jet regime</title><title>International journal of hydrogen energy</title><description>In this paper, the integral method is used to derive a complete set of results and expressions for selected physical turbulent properties of a non-buoyant jet or momentum-dominated buoyant jet regime of small-scale hydrogen leakage. Several quantities of interest, including the cross-stream velocity, Reynolds stress, velocity-concentration correlation (radial flux), dominant turbulent kinetic energy production term, turbulent eddy viscosity and turbulent eddy diffusivity are obtained. In addition, the turbulent Schmidt number is estimated and the normalized jet-feed material density and the normalized momentum flux density are correlated. Throughout this paper, experimental results from Schefer et al. [Schefer RW, Houf WG, Williams TC. Investigation of small-scale unintended releases of hydrogen: momentum-dominated regime. Int J Hydrogen Energy 2008;33(21):6373–84] and other works for the momentum-dominated jet resulting from small-scale hydrogen leakage are used in the integral method. For a non-buoyant jet or momentum-dominated regime of a buoyant jet, both the centerline velocity and centerline concentration are proportional with
z
−1. The effects of buoyancy-generated momentum are assumed to be small, and the Reynolds number is sufficient for fully developed turbulent flow. The hydrogen–air momentum-dominated regime or non-buoyant jet is compared with the air–air jet as an example of non-buoyant jets. Good agreement was found between the current results and experimental results from the literature. In addition, the turbulent Schmidt number was shown to depend solely on the ratio of the momentum spread rate to the material spread rate.</description><subject>Aerodynamics</subject><subject>Alternative fuels. Production and utilization</subject><subject>Applied sciences</subject><subject>Buoyancy</subject><subject>Combustion of gaseous fuels</subject><subject>Combustion. Flame</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fuels</subject><subject>Hydrogen</subject><subject>Hydrogen leakage</subject><subject>Integral method</subject><subject>Integrals</subject><subject>Leakage</subject><subject>Momentum-dominated regime</subject><subject>Non-buoyant jet</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>Turbulent Schmidt number</subject><issn>0360-3199</issn><issn>1879-3487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkc1u1DAUhSNEJYaWV0DeINgkXCcZ_7CiqvipVKkbWFue-HpwcOzWdirNW_SR8WgKYgWru_nOObrnNM1rCh0Fyt7PnZt_HAwG7HoA0VHaAePPmg0VXLbDKPjzZgMDg3agUr5oXuY8A1AOo9w0j9eh4D5pT3L0a3ExZGJjIhk9TgUNKWvarR5DIferDsUVh5lES_KivW_zpD2Smp7iHgPxqH_qPX4glyTE0O7WeKgaMmMh1XOJS_VZl9bExQV9dP-bSLh3C140Z1b7jK-e7nnz_fOnb1df25vbL9dXlzftNPKhtMYIEKK3vAfsQYClWkoDzNrJCNNLKnaIugI4MDOyQTC2lWP9ejtyYSkM583bk-9divcr5qIWlyf0XgeMa1ayVssHJmQl3_2TrE1KLsae84qyEzqlmHNCq-6SW3Q6KArqOJaa1e-x1HEsRamqY1Xhm6cMfazUJh0ml_-oe0pHgO22ch9PHNZqHhwmlSeHYULjUt1Lmej-F_ULAO6wqQ</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>El-Amin, M.F.</creator><creator>Kanayama, H.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20090201</creationdate><title>Integral solutions for selected turbulent quantities of small-scale hydrogen leakage: A non-buoyant jet or momentum-dominated buoyant jet regime</title><author>El-Amin, M.F. ; Kanayama, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-dd80882f720e2080f1a99d06ffcd8d2918beea82fe36d4638665940175478f103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Aerodynamics</topic><topic>Alternative fuels. Production and utilization</topic><topic>Applied sciences</topic><topic>Buoyancy</topic><topic>Combustion of gaseous fuels</topic><topic>Combustion. Flame</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fuels</topic><topic>Hydrogen</topic><topic>Hydrogen leakage</topic><topic>Integral method</topic><topic>Integrals</topic><topic>Leakage</topic><topic>Momentum-dominated regime</topic><topic>Non-buoyant jet</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>Turbulent Schmidt number</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El-Amin, M.F.</creatorcontrib><creatorcontrib>Kanayama, H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>International journal of hydrogen energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El-Amin, M.F.</au><au>Kanayama, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integral solutions for selected turbulent quantities of small-scale hydrogen leakage: A non-buoyant jet or momentum-dominated buoyant jet regime</atitle><jtitle>International journal of hydrogen energy</jtitle><date>2009-02-01</date><risdate>2009</risdate><volume>34</volume><issue>3</issue><spage>1607</spage><epage>1612</epage><pages>1607-1612</pages><issn>0360-3199</issn><eissn>1879-3487</eissn><coden>IJHEDX</coden><abstract>In this paper, the integral method is used to derive a complete set of results and expressions for selected physical turbulent properties of a non-buoyant jet or momentum-dominated buoyant jet regime of small-scale hydrogen leakage. Several quantities of interest, including the cross-stream velocity, Reynolds stress, velocity-concentration correlation (radial flux), dominant turbulent kinetic energy production term, turbulent eddy viscosity and turbulent eddy diffusivity are obtained. In addition, the turbulent Schmidt number is estimated and the normalized jet-feed material density and the normalized momentum flux density are correlated. Throughout this paper, experimental results from Schefer et al. [Schefer RW, Houf WG, Williams TC. Investigation of small-scale unintended releases of hydrogen: momentum-dominated regime. Int J Hydrogen Energy 2008;33(21):6373–84] and other works for the momentum-dominated jet resulting from small-scale hydrogen leakage are used in the integral method. For a non-buoyant jet or momentum-dominated regime of a buoyant jet, both the centerline velocity and centerline concentration are proportional with
z
−1. The effects of buoyancy-generated momentum are assumed to be small, and the Reynolds number is sufficient for fully developed turbulent flow. The hydrogen–air momentum-dominated regime or non-buoyant jet is compared with the air–air jet as an example of non-buoyant jets. Good agreement was found between the current results and experimental results from the literature. In addition, the turbulent Schmidt number was shown to depend solely on the ratio of the momentum spread rate to the material spread rate.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijhydene.2008.11.067</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-3199 |
ispartof | International journal of hydrogen energy, 2009-02, Vol.34 (3), p.1607-1612 |
issn | 0360-3199 1879-3487 |
language | eng |
recordid | cdi_proquest_miscellaneous_901673689 |
source | Elsevier ScienceDirect Journals |
subjects | Aerodynamics Alternative fuels. Production and utilization Applied sciences Buoyancy Combustion of gaseous fuels Combustion. Flame Energy Energy. Thermal use of fuels Exact sciences and technology Fluid dynamics Fluid flow Fuels Hydrogen Hydrogen leakage Integral method Integrals Leakage Momentum-dominated regime Non-buoyant jet Theoretical studies. Data and constants. Metering Turbulence Turbulent flow Turbulent Schmidt number |
title | Integral solutions for selected turbulent quantities of small-scale hydrogen leakage: A non-buoyant jet or momentum-dominated buoyant jet regime |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T01%3A41%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integral%20solutions%20for%20selected%20turbulent%20quantities%20of%20small-scale%20hydrogen%20leakage:%20A%20non-buoyant%20jet%20or%20momentum-dominated%20buoyant%20jet%20regime&rft.jtitle=International%20journal%20of%20hydrogen%20energy&rft.au=El-Amin,%20M.F.&rft.date=2009-02-01&rft.volume=34&rft.issue=3&rft.spage=1607&rft.epage=1612&rft.pages=1607-1612&rft.issn=0360-3199&rft.eissn=1879-3487&rft.coden=IJHEDX&rft_id=info:doi/10.1016/j.ijhydene.2008.11.067&rft_dat=%3Cproquest_cross%3E901673689%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1709784277&rft_id=info:pmid/&rft_els_id=S0360319908016352&rfr_iscdi=true |