No-reference image quality assessment using structural activity

Presuming that human visual perception is highly sensitive to the structural information in a scene, we propose the concept of structural activity (SA) together with a model of SA indicator in a new framework for no-reference (NR) image quality assessment (QA) in this study. The proposed framework e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Signal processing 2011-11, Vol.91 (11), p.2575-2588
Hauptverfasser: Zhang, Jing, Le, Thinh M., Ong, S.H., Nguyen, Truong Q.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2588
container_issue 11
container_start_page 2575
container_title Signal processing
container_volume 91
creator Zhang, Jing
Le, Thinh M.
Ong, S.H.
Nguyen, Truong Q.
description Presuming that human visual perception is highly sensitive to the structural information in a scene, we propose the concept of structural activity (SA) together with a model of SA indicator in a new framework for no-reference (NR) image quality assessment (QA) in this study. The proposed framework estimates image quality based on the quantification of the SA information of different visual significance. We propose some alternative implementations of SA indicator in this paper as examples to demonstrate the effectiveness of the SA-motivated framework. Comprehensive testing demonstrates that the model of SA indicator exhibits satisfactory performance in comparison with subjective quality scores as well as representative full-reference (FR) image quality measures. ► Structural activity-based new framework for no-reference image quality assessment. ► A general model named structural activity indicator working with a variety of image distortions. ► Good agreement with human perceived image quality.
doi_str_mv 10.1016/j.sigpro.2011.05.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901673576</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165168411001654</els_id><sourcerecordid>901673576</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-a19caea9fdae641f81fe24b6bd15eef0c71a618c1ffa58f5f98a264aef5b6fad3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEuXxByyyQawSPEnspBsQqnhJFWxgbU2dceUqTYonqdS_x1Urlqzu5sxcnSvEDcgMJOj7VcZ-uQl9lkuATKosxomYQF3laaVUdSomEVMp6Lo8FxfMKyklFFpOxONHnwZyFKizlPg1Lin5GbH1wy5BZmJeUzckI_tumfAQRjuMAdsE7eC3EboSZw5bputjXorvl-ev2Vs6_3x9nz3NU1voekgRphYJp65B0iW4Ghzl5UIvGlBETtoKUENtwTlUtVNuWmOuSySnFtphU1yKu8PfqPkzEg9m7dlS22JH_chmGgWrQlU6kuWBtKFnjm5mE6JX2BmQZj-XWZnDXGY_l5HKxIhnt8cCZIutC9hZz3-3eVlUkBd15B4OHEXbradg2Pr9eI0PZAfT9P7_ol88eITO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901673576</pqid></control><display><type>article</type><title>No-reference image quality assessment using structural activity</title><source>Elsevier ScienceDirect Journals</source><creator>Zhang, Jing ; Le, Thinh M. ; Ong, S.H. ; Nguyen, Truong Q.</creator><creatorcontrib>Zhang, Jing ; Le, Thinh M. ; Ong, S.H. ; Nguyen, Truong Q.</creatorcontrib><description>Presuming that human visual perception is highly sensitive to the structural information in a scene, we propose the concept of structural activity (SA) together with a model of SA indicator in a new framework for no-reference (NR) image quality assessment (QA) in this study. The proposed framework estimates image quality based on the quantification of the SA information of different visual significance. We propose some alternative implementations of SA indicator in this paper as examples to demonstrate the effectiveness of the SA-motivated framework. Comprehensive testing demonstrates that the model of SA indicator exhibits satisfactory performance in comparison with subjective quality scores as well as representative full-reference (FR) image quality measures. ► Structural activity-based new framework for no-reference image quality assessment. ► A general model named structural activity indicator working with a variety of image distortions. ► Good agreement with human perceived image quality.</description><identifier>ISSN: 0165-1684</identifier><identifier>EISSN: 1872-7557</identifier><identifier>DOI: 10.1016/j.sigpro.2011.05.011</identifier><identifier>CODEN: SPRODR</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Assessments ; Detection, estimation, filtering, equalization, prediction ; Estimates ; Exact sciences and technology ; Human ; Image quality ; Image quality assessment ; Indicators ; Information, signal and communications theory ; No-reference image quality assessment ; Signal and communications theory ; Signal processing ; Signal, noise ; Structural activity ; Telecommunications and information theory ; Visual ; Visual perception</subject><ispartof>Signal processing, 2011-11, Vol.91 (11), p.2575-2588</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-a19caea9fdae641f81fe24b6bd15eef0c71a618c1ffa58f5f98a264aef5b6fad3</citedby><cites>FETCH-LOGICAL-c368t-a19caea9fdae641f81fe24b6bd15eef0c71a618c1ffa58f5f98a264aef5b6fad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.sigpro.2011.05.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24371238$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Le, Thinh M.</creatorcontrib><creatorcontrib>Ong, S.H.</creatorcontrib><creatorcontrib>Nguyen, Truong Q.</creatorcontrib><title>No-reference image quality assessment using structural activity</title><title>Signal processing</title><description>Presuming that human visual perception is highly sensitive to the structural information in a scene, we propose the concept of structural activity (SA) together with a model of SA indicator in a new framework for no-reference (NR) image quality assessment (QA) in this study. The proposed framework estimates image quality based on the quantification of the SA information of different visual significance. We propose some alternative implementations of SA indicator in this paper as examples to demonstrate the effectiveness of the SA-motivated framework. Comprehensive testing demonstrates that the model of SA indicator exhibits satisfactory performance in comparison with subjective quality scores as well as representative full-reference (FR) image quality measures. ► Structural activity-based new framework for no-reference image quality assessment. ► A general model named structural activity indicator working with a variety of image distortions. ► Good agreement with human perceived image quality.</description><subject>Applied sciences</subject><subject>Assessments</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Estimates</subject><subject>Exact sciences and technology</subject><subject>Human</subject><subject>Image quality</subject><subject>Image quality assessment</subject><subject>Indicators</subject><subject>Information, signal and communications theory</subject><subject>No-reference image quality assessment</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal, noise</subject><subject>Structural activity</subject><subject>Telecommunications and information theory</subject><subject>Visual</subject><subject>Visual perception</subject><issn>0165-1684</issn><issn>1872-7557</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEuXxByyyQawSPEnspBsQqnhJFWxgbU2dceUqTYonqdS_x1Urlqzu5sxcnSvEDcgMJOj7VcZ-uQl9lkuATKosxomYQF3laaVUdSomEVMp6Lo8FxfMKyklFFpOxONHnwZyFKizlPg1Lin5GbH1wy5BZmJeUzckI_tumfAQRjuMAdsE7eC3EboSZw5bputjXorvl-ev2Vs6_3x9nz3NU1voekgRphYJp65B0iW4Ghzl5UIvGlBETtoKUENtwTlUtVNuWmOuSySnFtphU1yKu8PfqPkzEg9m7dlS22JH_chmGgWrQlU6kuWBtKFnjm5mE6JX2BmQZj-XWZnDXGY_l5HKxIhnt8cCZIutC9hZz3-3eVlUkBd15B4OHEXbradg2Pr9eI0PZAfT9P7_ol88eITO</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Zhang, Jing</creator><creator>Le, Thinh M.</creator><creator>Ong, S.H.</creator><creator>Nguyen, Truong Q.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20111101</creationdate><title>No-reference image quality assessment using structural activity</title><author>Zhang, Jing ; Le, Thinh M. ; Ong, S.H. ; Nguyen, Truong Q.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-a19caea9fdae641f81fe24b6bd15eef0c71a618c1ffa58f5f98a264aef5b6fad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Assessments</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Estimates</topic><topic>Exact sciences and technology</topic><topic>Human</topic><topic>Image quality</topic><topic>Image quality assessment</topic><topic>Indicators</topic><topic>Information, signal and communications theory</topic><topic>No-reference image quality assessment</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal, noise</topic><topic>Structural activity</topic><topic>Telecommunications and information theory</topic><topic>Visual</topic><topic>Visual perception</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Le, Thinh M.</creatorcontrib><creatorcontrib>Ong, S.H.</creatorcontrib><creatorcontrib>Nguyen, Truong Q.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jing</au><au>Le, Thinh M.</au><au>Ong, S.H.</au><au>Nguyen, Truong Q.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>No-reference image quality assessment using structural activity</atitle><jtitle>Signal processing</jtitle><date>2011-11-01</date><risdate>2011</risdate><volume>91</volume><issue>11</issue><spage>2575</spage><epage>2588</epage><pages>2575-2588</pages><issn>0165-1684</issn><eissn>1872-7557</eissn><coden>SPRODR</coden><abstract>Presuming that human visual perception is highly sensitive to the structural information in a scene, we propose the concept of structural activity (SA) together with a model of SA indicator in a new framework for no-reference (NR) image quality assessment (QA) in this study. The proposed framework estimates image quality based on the quantification of the SA information of different visual significance. We propose some alternative implementations of SA indicator in this paper as examples to demonstrate the effectiveness of the SA-motivated framework. Comprehensive testing demonstrates that the model of SA indicator exhibits satisfactory performance in comparison with subjective quality scores as well as representative full-reference (FR) image quality measures. ► Structural activity-based new framework for no-reference image quality assessment. ► A general model named structural activity indicator working with a variety of image distortions. ► Good agreement with human perceived image quality.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.sigpro.2011.05.011</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0165-1684
ispartof Signal processing, 2011-11, Vol.91 (11), p.2575-2588
issn 0165-1684
1872-7557
language eng
recordid cdi_proquest_miscellaneous_901673576
source Elsevier ScienceDirect Journals
subjects Applied sciences
Assessments
Detection, estimation, filtering, equalization, prediction
Estimates
Exact sciences and technology
Human
Image quality
Image quality assessment
Indicators
Information, signal and communications theory
No-reference image quality assessment
Signal and communications theory
Signal processing
Signal, noise
Structural activity
Telecommunications and information theory
Visual
Visual perception
title No-reference image quality assessment using structural activity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T17%3A51%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=No-reference%20image%20quality%20assessment%20using%20structural%20activity&rft.jtitle=Signal%20processing&rft.au=Zhang,%20Jing&rft.date=2011-11-01&rft.volume=91&rft.issue=11&rft.spage=2575&rft.epage=2588&rft.pages=2575-2588&rft.issn=0165-1684&rft.eissn=1872-7557&rft.coden=SPRODR&rft_id=info:doi/10.1016/j.sigpro.2011.05.011&rft_dat=%3Cproquest_cross%3E901673576%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=901673576&rft_id=info:pmid/&rft_els_id=S0165168411001654&rfr_iscdi=true