Role of balanced charge carrier transport in low band gap polymer:Fullerene bulk heterojunction solar cells
Lowering of the optical band gap of conjugated polymers in bulk heterojunction solar cells not only leads to an increased absorption but also to an increase of the optimal active layer thickness due to interference effects at longer wavelengths. The increased carrier densities due to the enhanced ab...
Gespeichert in:
Veröffentlicht in: | Journal of polymer science. Part B, Polymer physics Polymer physics, 2011-05, Vol.49 (10), p.708-711 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 711 |
---|---|
container_issue | 10 |
container_start_page | 708 |
container_title | Journal of polymer science. Part B, Polymer physics |
container_volume | 49 |
creator | Kotlarski, Jan D Moet, Date J.D Blom, Paul W.M |
description | Lowering of the optical band gap of conjugated polymers in bulk heterojunction solar cells not only leads to an increased absorption but also to an increase of the optimal active layer thickness due to interference effects at longer wavelengths. The increased carrier densities due to the enhanced absorption and thicker active layers make low band gap solar cells more sensitive to formation of space charges and recombination. By systematically red shifting the optical parameters of poly[2-methoxy-5-(3′,7′-dimethyloctyloxy)-p-phenylenevinylene] and 6,6-phenyl C₆₁-butyric acid methyl ester, we simulate the effect of a reduced band gap on the solar cell efficiencies. We show that especially the fill factor of low band gap cells is very sensitive to the balance of the charge transport. For a low band gap cell with an active layer thickness of 250 nm, the fill factor of 50% for balanced transport is reduced to less than 40% by an imbalance of only one order of magnitude. |
doi_str_mv | 10.1002/polb.22243 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901672773</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>901672773</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5403-e23356fe51335b0ebaf44463b30b63a6db449ad4e1ec80c636b94a5a6945e5e03</originalsourceid><addsrcrecordid>eNp9kc1uEzEURi0EEiGw4QXwBiEhTfH_zLAjhbSIiCJoxdK649xJp3HGU3tGJW9fh5QuWd2Fz3d8_ZmQ15ydcMbEhyH45kQIoeQTMuOsrgumquopmbGqKgsjjHlOXqR0w1g-0_WMbH8GjzS0tAEPvcM1ddcQN0gdxNhhpGOEPg0hjrTrqQ93GezXdAMDzXftdxg_LifvMWKPtJn8ll7jiDHcTL0bu9DTFDxE6tD79JI8a8EnfPUw5-Rq-eXy9LxYXZx9Pf20KpxWTBYopNSmRc3zbBg20CqljGwka4wEs26UqmGtkKOrmDPSNLUCDaZWGjUyOSfvjt4hhtsJ02h3XTpsAD2GKdmacVOKspSZfH8kXQwpRWztELsdxL3lzB4KtYdC7d9CM_z2QQvJgW9zMa5LjwmhWMVZts4JP3J3ncf9f4z2x8Vq8c9dHDNdGvHPYwbi1ppSltr-_n5ml1ovFvLys_2W-TdHvoVgYRPzHle_RH5X_lgpeC3kPXi1nrM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901672773</pqid></control><display><type>article</type><title>Role of balanced charge carrier transport in low band gap polymer:Fullerene bulk heterojunction solar cells</title><source>Wiley Online Library All Journals</source><creator>Kotlarski, Jan D ; Moet, Date J.D ; Blom, Paul W.M</creator><creatorcontrib>Kotlarski, Jan D ; Moet, Date J.D ; Blom, Paul W.M</creatorcontrib><description>Lowering of the optical band gap of conjugated polymers in bulk heterojunction solar cells not only leads to an increased absorption but also to an increase of the optimal active layer thickness due to interference effects at longer wavelengths. The increased carrier densities due to the enhanced absorption and thicker active layers make low band gap solar cells more sensitive to formation of space charges and recombination. By systematically red shifting the optical parameters of poly[2-methoxy-5-(3′,7′-dimethyloctyloxy)-p-phenylenevinylene] and 6,6-phenyl C₆₁-butyric acid methyl ester, we simulate the effect of a reduced band gap on the solar cell efficiencies. We show that especially the fill factor of low band gap cells is very sensitive to the balance of the charge transport. For a low band gap cell with an active layer thickness of 250 nm, the fill factor of 50% for balanced transport is reduced to less than 40% by an imbalance of only one order of magnitude.</description><identifier>ISSN: 0887-6266</identifier><identifier>ISSN: 1099-0488</identifier><identifier>EISSN: 1099-0488</identifier><identifier>DOI: 10.1002/polb.22243</identifier><identifier>CODEN: JPLPAY</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>absorption ; Application fields ; Applied sciences ; Balancing ; Charge transport ; computer modeling ; conducting polymers ; Energy ; Esters ; Exact sciences and technology ; Heterojunctions ; Natural energy ; Optimization ; Photovoltaic cells ; Photovoltaic conversion ; Polymer industry, paints, wood ; polymers ; Solar cells ; Solar cells. Photoelectrochemical cells ; Solar energy ; Technology of polymers ; Transport ; wavelengths</subject><ispartof>Journal of polymer science. Part B, Polymer physics, 2011-05, Vol.49 (10), p.708-711</ispartof><rights>Copyright © 2011 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5403-e23356fe51335b0ebaf44463b30b63a6db449ad4e1ec80c636b94a5a6945e5e03</citedby><cites>FETCH-LOGICAL-c5403-e23356fe51335b0ebaf44463b30b63a6db449ad4e1ec80c636b94a5a6945e5e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpolb.22243$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpolb.22243$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24081077$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kotlarski, Jan D</creatorcontrib><creatorcontrib>Moet, Date J.D</creatorcontrib><creatorcontrib>Blom, Paul W.M</creatorcontrib><title>Role of balanced charge carrier transport in low band gap polymer:Fullerene bulk heterojunction solar cells</title><title>Journal of polymer science. Part B, Polymer physics</title><addtitle>J. Polym. Sci. B Polym. Phys</addtitle><description>Lowering of the optical band gap of conjugated polymers in bulk heterojunction solar cells not only leads to an increased absorption but also to an increase of the optimal active layer thickness due to interference effects at longer wavelengths. The increased carrier densities due to the enhanced absorption and thicker active layers make low band gap solar cells more sensitive to formation of space charges and recombination. By systematically red shifting the optical parameters of poly[2-methoxy-5-(3′,7′-dimethyloctyloxy)-p-phenylenevinylene] and 6,6-phenyl C₆₁-butyric acid methyl ester, we simulate the effect of a reduced band gap on the solar cell efficiencies. We show that especially the fill factor of low band gap cells is very sensitive to the balance of the charge transport. For a low band gap cell with an active layer thickness of 250 nm, the fill factor of 50% for balanced transport is reduced to less than 40% by an imbalance of only one order of magnitude.</description><subject>absorption</subject><subject>Application fields</subject><subject>Applied sciences</subject><subject>Balancing</subject><subject>Charge transport</subject><subject>computer modeling</subject><subject>conducting polymers</subject><subject>Energy</subject><subject>Esters</subject><subject>Exact sciences and technology</subject><subject>Heterojunctions</subject><subject>Natural energy</subject><subject>Optimization</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic conversion</subject><subject>Polymer industry, paints, wood</subject><subject>polymers</subject><subject>Solar cells</subject><subject>Solar cells. Photoelectrochemical cells</subject><subject>Solar energy</subject><subject>Technology of polymers</subject><subject>Transport</subject><subject>wavelengths</subject><issn>0887-6266</issn><issn>1099-0488</issn><issn>1099-0488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kc1uEzEURi0EEiGw4QXwBiEhTfH_zLAjhbSIiCJoxdK649xJp3HGU3tGJW9fh5QuWd2Fz3d8_ZmQ15ydcMbEhyH45kQIoeQTMuOsrgumquopmbGqKgsjjHlOXqR0w1g-0_WMbH8GjzS0tAEPvcM1ddcQN0gdxNhhpGOEPg0hjrTrqQ93GezXdAMDzXftdxg_LifvMWKPtJn8ll7jiDHcTL0bu9DTFDxE6tD79JI8a8EnfPUw5-Rq-eXy9LxYXZx9Pf20KpxWTBYopNSmRc3zbBg20CqljGwka4wEs26UqmGtkKOrmDPSNLUCDaZWGjUyOSfvjt4hhtsJ02h3XTpsAD2GKdmacVOKspSZfH8kXQwpRWztELsdxL3lzB4KtYdC7d9CM_z2QQvJgW9zMa5LjwmhWMVZts4JP3J3ncf9f4z2x8Vq8c9dHDNdGvHPYwbi1ppSltr-_n5ml1ovFvLys_2W-TdHvoVgYRPzHle_RH5X_lgpeC3kPXi1nrM</recordid><startdate>20110515</startdate><enddate>20110515</enddate><creator>Kotlarski, Jan D</creator><creator>Moet, Date J.D</creator><creator>Blom, Paul W.M</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20110515</creationdate><title>Role of balanced charge carrier transport in low band gap polymer:Fullerene bulk heterojunction solar cells</title><author>Kotlarski, Jan D ; Moet, Date J.D ; Blom, Paul W.M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5403-e23356fe51335b0ebaf44463b30b63a6db449ad4e1ec80c636b94a5a6945e5e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>absorption</topic><topic>Application fields</topic><topic>Applied sciences</topic><topic>Balancing</topic><topic>Charge transport</topic><topic>computer modeling</topic><topic>conducting polymers</topic><topic>Energy</topic><topic>Esters</topic><topic>Exact sciences and technology</topic><topic>Heterojunctions</topic><topic>Natural energy</topic><topic>Optimization</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic conversion</topic><topic>Polymer industry, paints, wood</topic><topic>polymers</topic><topic>Solar cells</topic><topic>Solar cells. Photoelectrochemical cells</topic><topic>Solar energy</topic><topic>Technology of polymers</topic><topic>Transport</topic><topic>wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kotlarski, Jan D</creatorcontrib><creatorcontrib>Moet, Date J.D</creatorcontrib><creatorcontrib>Blom, Paul W.M</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of polymer science. Part B, Polymer physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kotlarski, Jan D</au><au>Moet, Date J.D</au><au>Blom, Paul W.M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of balanced charge carrier transport in low band gap polymer:Fullerene bulk heterojunction solar cells</atitle><jtitle>Journal of polymer science. Part B, Polymer physics</jtitle><addtitle>J. Polym. Sci. B Polym. Phys</addtitle><date>2011-05-15</date><risdate>2011</risdate><volume>49</volume><issue>10</issue><spage>708</spage><epage>711</epage><pages>708-711</pages><issn>0887-6266</issn><issn>1099-0488</issn><eissn>1099-0488</eissn><coden>JPLPAY</coden><abstract>Lowering of the optical band gap of conjugated polymers in bulk heterojunction solar cells not only leads to an increased absorption but also to an increase of the optimal active layer thickness due to interference effects at longer wavelengths. The increased carrier densities due to the enhanced absorption and thicker active layers make low band gap solar cells more sensitive to formation of space charges and recombination. By systematically red shifting the optical parameters of poly[2-methoxy-5-(3′,7′-dimethyloctyloxy)-p-phenylenevinylene] and 6,6-phenyl C₆₁-butyric acid methyl ester, we simulate the effect of a reduced band gap on the solar cell efficiencies. We show that especially the fill factor of low band gap cells is very sensitive to the balance of the charge transport. For a low band gap cell with an active layer thickness of 250 nm, the fill factor of 50% for balanced transport is reduced to less than 40% by an imbalance of only one order of magnitude.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/polb.22243</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0887-6266 |
ispartof | Journal of polymer science. Part B, Polymer physics, 2011-05, Vol.49 (10), p.708-711 |
issn | 0887-6266 1099-0488 1099-0488 |
language | eng |
recordid | cdi_proquest_miscellaneous_901672773 |
source | Wiley Online Library All Journals |
subjects | absorption Application fields Applied sciences Balancing Charge transport computer modeling conducting polymers Energy Esters Exact sciences and technology Heterojunctions Natural energy Optimization Photovoltaic cells Photovoltaic conversion Polymer industry, paints, wood polymers Solar cells Solar cells. Photoelectrochemical cells Solar energy Technology of polymers Transport wavelengths |
title | Role of balanced charge carrier transport in low band gap polymer:Fullerene bulk heterojunction solar cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T11%3A13%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20balanced%20charge%20carrier%20transport%20in%20low%20band%20gap%20polymer:Fullerene%20bulk%20heterojunction%20solar%20cells&rft.jtitle=Journal%20of%20polymer%20science.%20Part%20B,%20Polymer%20physics&rft.au=Kotlarski,%20Jan%20D&rft.date=2011-05-15&rft.volume=49&rft.issue=10&rft.spage=708&rft.epage=711&rft.pages=708-711&rft.issn=0887-6266&rft.eissn=1099-0488&rft.coden=JPLPAY&rft_id=info:doi/10.1002/polb.22243&rft_dat=%3Cproquest_cross%3E901672773%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=901672773&rft_id=info:pmid/&rfr_iscdi=true |