Role of balanced charge carrier transport in low band gap polymer:Fullerene bulk heterojunction solar cells

Lowering of the optical band gap of conjugated polymers in bulk heterojunction solar cells not only leads to an increased absorption but also to an increase of the optimal active layer thickness due to interference effects at longer wavelengths. The increased carrier densities due to the enhanced ab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of polymer science. Part B, Polymer physics Polymer physics, 2011-05, Vol.49 (10), p.708-711
Hauptverfasser: Kotlarski, Jan D, Moet, Date J.D, Blom, Paul W.M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 711
container_issue 10
container_start_page 708
container_title Journal of polymer science. Part B, Polymer physics
container_volume 49
creator Kotlarski, Jan D
Moet, Date J.D
Blom, Paul W.M
description Lowering of the optical band gap of conjugated polymers in bulk heterojunction solar cells not only leads to an increased absorption but also to an increase of the optimal active layer thickness due to interference effects at longer wavelengths. The increased carrier densities due to the enhanced absorption and thicker active layers make low band gap solar cells more sensitive to formation of space charges and recombination. By systematically red shifting the optical parameters of poly[2-methoxy-5-(3′,7′-dimethyloctyloxy)-p-phenylenevinylene] and 6,6-phenyl C₆₁-butyric acid methyl ester, we simulate the effect of a reduced band gap on the solar cell efficiencies. We show that especially the fill factor of low band gap cells is very sensitive to the balance of the charge transport. For a low band gap cell with an active layer thickness of 250 nm, the fill factor of 50% for balanced transport is reduced to less than 40% by an imbalance of only one order of magnitude.
doi_str_mv 10.1002/polb.22243
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901672773</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>901672773</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5403-e23356fe51335b0ebaf44463b30b63a6db449ad4e1ec80c636b94a5a6945e5e03</originalsourceid><addsrcrecordid>eNp9kc1uEzEURi0EEiGw4QXwBiEhTfH_zLAjhbSIiCJoxdK649xJp3HGU3tGJW9fh5QuWd2Fz3d8_ZmQ15ydcMbEhyH45kQIoeQTMuOsrgumquopmbGqKgsjjHlOXqR0w1g-0_WMbH8GjzS0tAEPvcM1ddcQN0gdxNhhpGOEPg0hjrTrqQ93GezXdAMDzXftdxg_LifvMWKPtJn8ll7jiDHcTL0bu9DTFDxE6tD79JI8a8EnfPUw5-Rq-eXy9LxYXZx9Pf20KpxWTBYopNSmRc3zbBg20CqljGwka4wEs26UqmGtkKOrmDPSNLUCDaZWGjUyOSfvjt4hhtsJ02h3XTpsAD2GKdmacVOKspSZfH8kXQwpRWztELsdxL3lzB4KtYdC7d9CM_z2QQvJgW9zMa5LjwmhWMVZts4JP3J3ncf9f4z2x8Vq8c9dHDNdGvHPYwbi1ppSltr-_n5ml1ovFvLys_2W-TdHvoVgYRPzHle_RH5X_lgpeC3kPXi1nrM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901672773</pqid></control><display><type>article</type><title>Role of balanced charge carrier transport in low band gap polymer:Fullerene bulk heterojunction solar cells</title><source>Wiley Online Library All Journals</source><creator>Kotlarski, Jan D ; Moet, Date J.D ; Blom, Paul W.M</creator><creatorcontrib>Kotlarski, Jan D ; Moet, Date J.D ; Blom, Paul W.M</creatorcontrib><description>Lowering of the optical band gap of conjugated polymers in bulk heterojunction solar cells not only leads to an increased absorption but also to an increase of the optimal active layer thickness due to interference effects at longer wavelengths. The increased carrier densities due to the enhanced absorption and thicker active layers make low band gap solar cells more sensitive to formation of space charges and recombination. By systematically red shifting the optical parameters of poly[2-methoxy-5-(3′,7′-dimethyloctyloxy)-p-phenylenevinylene] and 6,6-phenyl C₆₁-butyric acid methyl ester, we simulate the effect of a reduced band gap on the solar cell efficiencies. We show that especially the fill factor of low band gap cells is very sensitive to the balance of the charge transport. For a low band gap cell with an active layer thickness of 250 nm, the fill factor of 50% for balanced transport is reduced to less than 40% by an imbalance of only one order of magnitude.</description><identifier>ISSN: 0887-6266</identifier><identifier>ISSN: 1099-0488</identifier><identifier>EISSN: 1099-0488</identifier><identifier>DOI: 10.1002/polb.22243</identifier><identifier>CODEN: JPLPAY</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>absorption ; Application fields ; Applied sciences ; Balancing ; Charge transport ; computer modeling ; conducting polymers ; Energy ; Esters ; Exact sciences and technology ; Heterojunctions ; Natural energy ; Optimization ; Photovoltaic cells ; Photovoltaic conversion ; Polymer industry, paints, wood ; polymers ; Solar cells ; Solar cells. Photoelectrochemical cells ; Solar energy ; Technology of polymers ; Transport ; wavelengths</subject><ispartof>Journal of polymer science. Part B, Polymer physics, 2011-05, Vol.49 (10), p.708-711</ispartof><rights>Copyright © 2011 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5403-e23356fe51335b0ebaf44463b30b63a6db449ad4e1ec80c636b94a5a6945e5e03</citedby><cites>FETCH-LOGICAL-c5403-e23356fe51335b0ebaf44463b30b63a6db449ad4e1ec80c636b94a5a6945e5e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpolb.22243$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpolb.22243$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24081077$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kotlarski, Jan D</creatorcontrib><creatorcontrib>Moet, Date J.D</creatorcontrib><creatorcontrib>Blom, Paul W.M</creatorcontrib><title>Role of balanced charge carrier transport in low band gap polymer:Fullerene bulk heterojunction solar cells</title><title>Journal of polymer science. Part B, Polymer physics</title><addtitle>J. Polym. Sci. B Polym. Phys</addtitle><description>Lowering of the optical band gap of conjugated polymers in bulk heterojunction solar cells not only leads to an increased absorption but also to an increase of the optimal active layer thickness due to interference effects at longer wavelengths. The increased carrier densities due to the enhanced absorption and thicker active layers make low band gap solar cells more sensitive to formation of space charges and recombination. By systematically red shifting the optical parameters of poly[2-methoxy-5-(3′,7′-dimethyloctyloxy)-p-phenylenevinylene] and 6,6-phenyl C₆₁-butyric acid methyl ester, we simulate the effect of a reduced band gap on the solar cell efficiencies. We show that especially the fill factor of low band gap cells is very sensitive to the balance of the charge transport. For a low band gap cell with an active layer thickness of 250 nm, the fill factor of 50% for balanced transport is reduced to less than 40% by an imbalance of only one order of magnitude.</description><subject>absorption</subject><subject>Application fields</subject><subject>Applied sciences</subject><subject>Balancing</subject><subject>Charge transport</subject><subject>computer modeling</subject><subject>conducting polymers</subject><subject>Energy</subject><subject>Esters</subject><subject>Exact sciences and technology</subject><subject>Heterojunctions</subject><subject>Natural energy</subject><subject>Optimization</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic conversion</subject><subject>Polymer industry, paints, wood</subject><subject>polymers</subject><subject>Solar cells</subject><subject>Solar cells. Photoelectrochemical cells</subject><subject>Solar energy</subject><subject>Technology of polymers</subject><subject>Transport</subject><subject>wavelengths</subject><issn>0887-6266</issn><issn>1099-0488</issn><issn>1099-0488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kc1uEzEURi0EEiGw4QXwBiEhTfH_zLAjhbSIiCJoxdK649xJp3HGU3tGJW9fh5QuWd2Fz3d8_ZmQ15ydcMbEhyH45kQIoeQTMuOsrgumquopmbGqKgsjjHlOXqR0w1g-0_WMbH8GjzS0tAEPvcM1ddcQN0gdxNhhpGOEPg0hjrTrqQ93GezXdAMDzXftdxg_LifvMWKPtJn8ll7jiDHcTL0bu9DTFDxE6tD79JI8a8EnfPUw5-Rq-eXy9LxYXZx9Pf20KpxWTBYopNSmRc3zbBg20CqljGwka4wEs26UqmGtkKOrmDPSNLUCDaZWGjUyOSfvjt4hhtsJ02h3XTpsAD2GKdmacVOKspSZfH8kXQwpRWztELsdxL3lzB4KtYdC7d9CM_z2QQvJgW9zMa5LjwmhWMVZts4JP3J3ncf9f4z2x8Vq8c9dHDNdGvHPYwbi1ppSltr-_n5ml1ovFvLys_2W-TdHvoVgYRPzHle_RH5X_lgpeC3kPXi1nrM</recordid><startdate>20110515</startdate><enddate>20110515</enddate><creator>Kotlarski, Jan D</creator><creator>Moet, Date J.D</creator><creator>Blom, Paul W.M</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20110515</creationdate><title>Role of balanced charge carrier transport in low band gap polymer:Fullerene bulk heterojunction solar cells</title><author>Kotlarski, Jan D ; Moet, Date J.D ; Blom, Paul W.M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5403-e23356fe51335b0ebaf44463b30b63a6db449ad4e1ec80c636b94a5a6945e5e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>absorption</topic><topic>Application fields</topic><topic>Applied sciences</topic><topic>Balancing</topic><topic>Charge transport</topic><topic>computer modeling</topic><topic>conducting polymers</topic><topic>Energy</topic><topic>Esters</topic><topic>Exact sciences and technology</topic><topic>Heterojunctions</topic><topic>Natural energy</topic><topic>Optimization</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic conversion</topic><topic>Polymer industry, paints, wood</topic><topic>polymers</topic><topic>Solar cells</topic><topic>Solar cells. Photoelectrochemical cells</topic><topic>Solar energy</topic><topic>Technology of polymers</topic><topic>Transport</topic><topic>wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kotlarski, Jan D</creatorcontrib><creatorcontrib>Moet, Date J.D</creatorcontrib><creatorcontrib>Blom, Paul W.M</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of polymer science. Part B, Polymer physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kotlarski, Jan D</au><au>Moet, Date J.D</au><au>Blom, Paul W.M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of balanced charge carrier transport in low band gap polymer:Fullerene bulk heterojunction solar cells</atitle><jtitle>Journal of polymer science. Part B, Polymer physics</jtitle><addtitle>J. Polym. Sci. B Polym. Phys</addtitle><date>2011-05-15</date><risdate>2011</risdate><volume>49</volume><issue>10</issue><spage>708</spage><epage>711</epage><pages>708-711</pages><issn>0887-6266</issn><issn>1099-0488</issn><eissn>1099-0488</eissn><coden>JPLPAY</coden><abstract>Lowering of the optical band gap of conjugated polymers in bulk heterojunction solar cells not only leads to an increased absorption but also to an increase of the optimal active layer thickness due to interference effects at longer wavelengths. The increased carrier densities due to the enhanced absorption and thicker active layers make low band gap solar cells more sensitive to formation of space charges and recombination. By systematically red shifting the optical parameters of poly[2-methoxy-5-(3′,7′-dimethyloctyloxy)-p-phenylenevinylene] and 6,6-phenyl C₆₁-butyric acid methyl ester, we simulate the effect of a reduced band gap on the solar cell efficiencies. We show that especially the fill factor of low band gap cells is very sensitive to the balance of the charge transport. For a low band gap cell with an active layer thickness of 250 nm, the fill factor of 50% for balanced transport is reduced to less than 40% by an imbalance of only one order of magnitude.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/polb.22243</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0887-6266
ispartof Journal of polymer science. Part B, Polymer physics, 2011-05, Vol.49 (10), p.708-711
issn 0887-6266
1099-0488
1099-0488
language eng
recordid cdi_proquest_miscellaneous_901672773
source Wiley Online Library All Journals
subjects absorption
Application fields
Applied sciences
Balancing
Charge transport
computer modeling
conducting polymers
Energy
Esters
Exact sciences and technology
Heterojunctions
Natural energy
Optimization
Photovoltaic cells
Photovoltaic conversion
Polymer industry, paints, wood
polymers
Solar cells
Solar cells. Photoelectrochemical cells
Solar energy
Technology of polymers
Transport
wavelengths
title Role of balanced charge carrier transport in low band gap polymer:Fullerene bulk heterojunction solar cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T11%3A13%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20balanced%20charge%20carrier%20transport%20in%20low%20band%20gap%20polymer:Fullerene%20bulk%20heterojunction%20solar%20cells&rft.jtitle=Journal%20of%20polymer%20science.%20Part%20B,%20Polymer%20physics&rft.au=Kotlarski,%20Jan%20D&rft.date=2011-05-15&rft.volume=49&rft.issue=10&rft.spage=708&rft.epage=711&rft.pages=708-711&rft.issn=0887-6266&rft.eissn=1099-0488&rft.coden=JPLPAY&rft_id=info:doi/10.1002/polb.22243&rft_dat=%3Cproquest_cross%3E901672773%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=901672773&rft_id=info:pmid/&rfr_iscdi=true