Fluorescence spectroscopy and thermal relaxation processes of anthracenyl-labeled polysiloxanes

A fluorescent silicone network was prepared by a hydrosilylation reaction using poly(dimethylsiloxane‐co‐methylhydrogensiloxane) terminated by dimethylhydrogensilyloxy groups, poly(dimethylsiloxane‐co‐methylvinylsiloxane) terminated by dimethylvinylsilyloxy groups and 9‐vinylanthracene, as the fluor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of polymer science. Part B, Polymer physics Polymer physics, 2010-01, Vol.48 (1), p.74-81
Hauptverfasser: Domingues, Raquel Aparecida, Yoshida, Inez Valéria Pagotto, Atvars, Teresa Dib Zambon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 81
container_issue 1
container_start_page 74
container_title Journal of polymer science. Part B, Polymer physics
container_volume 48
creator Domingues, Raquel Aparecida
Yoshida, Inez Valéria Pagotto
Atvars, Teresa Dib Zambon
description A fluorescent silicone network was prepared by a hydrosilylation reaction using poly(dimethylsiloxane‐co‐methylhydrogensiloxane) terminated by dimethylhydrogensilyloxy groups, poly(dimethylsiloxane‐co‐methylvinylsiloxane) terminated by dimethylvinylsilyloxy groups and 9‐vinylanthracene, as the fluorescent group. These silicone‐based materials were strongly fluorescent. Steady state emission was a convenient technique to prove that reaction occurred, based on the blue‐shift of the emission from anthracenyl moieties compared with the 9‐vinylanthracene. Thermal transitions were studied by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA) and by fluorescence spectroscopy, indicating that networks with and without lumophores had similar thermal properties. Networks with and without lumophores had the same swelling capability in toluene. Fluorescence spectroscopy was a more sensitive technique to the onset of the glass transition temperature (T = 145 K) than DSC or DMA. Nevertheless, the crystallization temperature at 192 K was determined more precisely by DSC, and the melting point at 237 K was indentified more clearly by both DSC and DMA. These three techniques provided complementary information about transitions in silicone networks. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 74–81, 2010
doi_str_mv 10.1002/polb.21845
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901672495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>901672495</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4125-5e25b603ae9a76cb909f15e286aac88b58e202a733858f31c7d7f65341d72bda3</originalsourceid><addsrcrecordid>eNqFkEtP3DAURq2KSgxDN_yC7CpVyuBH_FoW1BkQw1OturQc50ak9YxTO6NO_j2GlC5hZen6nKvvfgidELwgGNPTPvh6QYmq-Ac0I1jrEldKHaAZVkqWggpxiI5S-oVx_uN6hszS70KE5GDroEg9uCGG5EI_FnbbFMMjxI31RQRv93bowrboY3CQEqQitJkZHqPN8uhLb2vw0BQ5w5g6H_Z2C-kYfWytT_Dp3ztHP5bfvp9flOvb1eX513XpKkJ5yYHyWmBmQVspXK2xbkkeKmGtU6rmCiimVjKmuGoZcbKRreCsIo2kdWPZHH2e9uZ4f3aQBrPp8lHe5xBhl4zGREhaaf4uqbQgSitGM_llIl2uJEVoTR-7jY2jIdg8122e6zYvdWeYTPDfzsP4Bmnubtdnr045OV0aYP_fsfG3EZJJbn7erIy4Flf0Xq_MA3sCZwiTmg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>896189832</pqid></control><display><type>article</type><title>Fluorescence spectroscopy and thermal relaxation processes of anthracenyl-labeled polysiloxanes</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Domingues, Raquel Aparecida ; Yoshida, Inez Valéria Pagotto ; Atvars, Teresa Dib Zambon</creator><creatorcontrib>Domingues, Raquel Aparecida ; Yoshida, Inez Valéria Pagotto ; Atvars, Teresa Dib Zambon</creatorcontrib><description>A fluorescent silicone network was prepared by a hydrosilylation reaction using poly(dimethylsiloxane‐co‐methylhydrogensiloxane) terminated by dimethylhydrogensilyloxy groups, poly(dimethylsiloxane‐co‐methylvinylsiloxane) terminated by dimethylvinylsilyloxy groups and 9‐vinylanthracene, as the fluorescent group. These silicone‐based materials were strongly fluorescent. Steady state emission was a convenient technique to prove that reaction occurred, based on the blue‐shift of the emission from anthracenyl moieties compared with the 9‐vinylanthracene. Thermal transitions were studied by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA) and by fluorescence spectroscopy, indicating that networks with and without lumophores had similar thermal properties. Networks with and without lumophores had the same swelling capability in toluene. Fluorescence spectroscopy was a more sensitive technique to the onset of the glass transition temperature (T = 145 K) than DSC or DMA. Nevertheless, the crystallization temperature at 192 K was determined more precisely by DSC, and the melting point at 237 K was indentified more clearly by both DSC and DMA. These three techniques provided complementary information about transitions in silicone networks. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 74–81, 2010</description><identifier>ISSN: 0887-6266</identifier><identifier>ISSN: 1099-0488</identifier><identifier>EISSN: 1099-0488</identifier><identifier>DOI: 10.1002/polb.21845</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>anthracenyl groups ; Differential scanning calorimetry ; Emission spectroscopy ; Fluorescence ; Hydrosilylation ; Networks ; Reproduction ; Silicones ; Spectroscopy ; Thermal properties ; thermal relaxations</subject><ispartof>Journal of polymer science. Part B, Polymer physics, 2010-01, Vol.48 (1), p.74-81</ispartof><rights>Copyright © 2009 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4125-5e25b603ae9a76cb909f15e286aac88b58e202a733858f31c7d7f65341d72bda3</citedby><cites>FETCH-LOGICAL-c4125-5e25b603ae9a76cb909f15e286aac88b58e202a733858f31c7d7f65341d72bda3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpolb.21845$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpolb.21845$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Domingues, Raquel Aparecida</creatorcontrib><creatorcontrib>Yoshida, Inez Valéria Pagotto</creatorcontrib><creatorcontrib>Atvars, Teresa Dib Zambon</creatorcontrib><title>Fluorescence spectroscopy and thermal relaxation processes of anthracenyl-labeled polysiloxanes</title><title>Journal of polymer science. Part B, Polymer physics</title><addtitle>J. Polym. Sci. B Polym. Phys</addtitle><description>A fluorescent silicone network was prepared by a hydrosilylation reaction using poly(dimethylsiloxane‐co‐methylhydrogensiloxane) terminated by dimethylhydrogensilyloxy groups, poly(dimethylsiloxane‐co‐methylvinylsiloxane) terminated by dimethylvinylsilyloxy groups and 9‐vinylanthracene, as the fluorescent group. These silicone‐based materials were strongly fluorescent. Steady state emission was a convenient technique to prove that reaction occurred, based on the blue‐shift of the emission from anthracenyl moieties compared with the 9‐vinylanthracene. Thermal transitions were studied by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA) and by fluorescence spectroscopy, indicating that networks with and without lumophores had similar thermal properties. Networks with and without lumophores had the same swelling capability in toluene. Fluorescence spectroscopy was a more sensitive technique to the onset of the glass transition temperature (T = 145 K) than DSC or DMA. Nevertheless, the crystallization temperature at 192 K was determined more precisely by DSC, and the melting point at 237 K was indentified more clearly by both DSC and DMA. These three techniques provided complementary information about transitions in silicone networks. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 74–81, 2010</description><subject>anthracenyl groups</subject><subject>Differential scanning calorimetry</subject><subject>Emission spectroscopy</subject><subject>Fluorescence</subject><subject>Hydrosilylation</subject><subject>Networks</subject><subject>Reproduction</subject><subject>Silicones</subject><subject>Spectroscopy</subject><subject>Thermal properties</subject><subject>thermal relaxations</subject><issn>0887-6266</issn><issn>1099-0488</issn><issn>1099-0488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkEtP3DAURq2KSgxDN_yC7CpVyuBH_FoW1BkQw1OturQc50ak9YxTO6NO_j2GlC5hZen6nKvvfgidELwgGNPTPvh6QYmq-Ac0I1jrEldKHaAZVkqWggpxiI5S-oVx_uN6hszS70KE5GDroEg9uCGG5EI_FnbbFMMjxI31RQRv93bowrboY3CQEqQitJkZHqPN8uhLb2vw0BQ5w5g6H_Z2C-kYfWytT_Dp3ztHP5bfvp9flOvb1eX513XpKkJ5yYHyWmBmQVspXK2xbkkeKmGtU6rmCiimVjKmuGoZcbKRreCsIo2kdWPZHH2e9uZ4f3aQBrPp8lHe5xBhl4zGREhaaf4uqbQgSitGM_llIl2uJEVoTR-7jY2jIdg8122e6zYvdWeYTPDfzsP4Bmnubtdnr045OV0aYP_fsfG3EZJJbn7erIy4Flf0Xq_MA3sCZwiTmg</recordid><startdate>201001</startdate><enddate>201001</enddate><creator>Domingues, Raquel Aparecida</creator><creator>Yoshida, Inez Valéria Pagotto</creator><creator>Atvars, Teresa Dib Zambon</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201001</creationdate><title>Fluorescence spectroscopy and thermal relaxation processes of anthracenyl-labeled polysiloxanes</title><author>Domingues, Raquel Aparecida ; Yoshida, Inez Valéria Pagotto ; Atvars, Teresa Dib Zambon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4125-5e25b603ae9a76cb909f15e286aac88b58e202a733858f31c7d7f65341d72bda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>anthracenyl groups</topic><topic>Differential scanning calorimetry</topic><topic>Emission spectroscopy</topic><topic>Fluorescence</topic><topic>Hydrosilylation</topic><topic>Networks</topic><topic>Reproduction</topic><topic>Silicones</topic><topic>Spectroscopy</topic><topic>Thermal properties</topic><topic>thermal relaxations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Domingues, Raquel Aparecida</creatorcontrib><creatorcontrib>Yoshida, Inez Valéria Pagotto</creatorcontrib><creatorcontrib>Atvars, Teresa Dib Zambon</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of polymer science. Part B, Polymer physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Domingues, Raquel Aparecida</au><au>Yoshida, Inez Valéria Pagotto</au><au>Atvars, Teresa Dib Zambon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fluorescence spectroscopy and thermal relaxation processes of anthracenyl-labeled polysiloxanes</atitle><jtitle>Journal of polymer science. Part B, Polymer physics</jtitle><addtitle>J. Polym. Sci. B Polym. Phys</addtitle><date>2010-01</date><risdate>2010</risdate><volume>48</volume><issue>1</issue><spage>74</spage><epage>81</epage><pages>74-81</pages><issn>0887-6266</issn><issn>1099-0488</issn><eissn>1099-0488</eissn><abstract>A fluorescent silicone network was prepared by a hydrosilylation reaction using poly(dimethylsiloxane‐co‐methylhydrogensiloxane) terminated by dimethylhydrogensilyloxy groups, poly(dimethylsiloxane‐co‐methylvinylsiloxane) terminated by dimethylvinylsilyloxy groups and 9‐vinylanthracene, as the fluorescent group. These silicone‐based materials were strongly fluorescent. Steady state emission was a convenient technique to prove that reaction occurred, based on the blue‐shift of the emission from anthracenyl moieties compared with the 9‐vinylanthracene. Thermal transitions were studied by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA) and by fluorescence spectroscopy, indicating that networks with and without lumophores had similar thermal properties. Networks with and without lumophores had the same swelling capability in toluene. Fluorescence spectroscopy was a more sensitive technique to the onset of the glass transition temperature (T = 145 K) than DSC or DMA. Nevertheless, the crystallization temperature at 192 K was determined more precisely by DSC, and the melting point at 237 K was indentified more clearly by both DSC and DMA. These three techniques provided complementary information about transitions in silicone networks. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 74–81, 2010</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/polb.21845</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0887-6266
ispartof Journal of polymer science. Part B, Polymer physics, 2010-01, Vol.48 (1), p.74-81
issn 0887-6266
1099-0488
1099-0488
language eng
recordid cdi_proquest_miscellaneous_901672495
source Wiley Online Library Journals Frontfile Complete
subjects anthracenyl groups
Differential scanning calorimetry
Emission spectroscopy
Fluorescence
Hydrosilylation
Networks
Reproduction
Silicones
Spectroscopy
Thermal properties
thermal relaxations
title Fluorescence spectroscopy and thermal relaxation processes of anthracenyl-labeled polysiloxanes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T04%3A01%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fluorescence%20spectroscopy%20and%20thermal%20relaxation%20processes%20of%20anthracenyl-labeled%20polysiloxanes&rft.jtitle=Journal%20of%20polymer%20science.%20Part%20B,%20Polymer%20physics&rft.au=Domingues,%20Raquel%20Aparecida&rft.date=2010-01&rft.volume=48&rft.issue=1&rft.spage=74&rft.epage=81&rft.pages=74-81&rft.issn=0887-6266&rft.eissn=1099-0488&rft_id=info:doi/10.1002/polb.21845&rft_dat=%3Cproquest_cross%3E901672495%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=896189832&rft_id=info:pmid/&rfr_iscdi=true