Fluorescence spectroscopy and thermal relaxation processes of anthracenyl-labeled polysiloxanes
A fluorescent silicone network was prepared by a hydrosilylation reaction using poly(dimethylsiloxane‐co‐methylhydrogensiloxane) terminated by dimethylhydrogensilyloxy groups, poly(dimethylsiloxane‐co‐methylvinylsiloxane) terminated by dimethylvinylsilyloxy groups and 9‐vinylanthracene, as the fluor...
Gespeichert in:
Veröffentlicht in: | Journal of polymer science. Part B, Polymer physics Polymer physics, 2010-01, Vol.48 (1), p.74-81 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 81 |
---|---|
container_issue | 1 |
container_start_page | 74 |
container_title | Journal of polymer science. Part B, Polymer physics |
container_volume | 48 |
creator | Domingues, Raquel Aparecida Yoshida, Inez Valéria Pagotto Atvars, Teresa Dib Zambon |
description | A fluorescent silicone network was prepared by a hydrosilylation reaction using poly(dimethylsiloxane‐co‐methylhydrogensiloxane) terminated by dimethylhydrogensilyloxy groups, poly(dimethylsiloxane‐co‐methylvinylsiloxane) terminated by dimethylvinylsilyloxy groups and 9‐vinylanthracene, as the fluorescent group. These silicone‐based materials were strongly fluorescent. Steady state emission was a convenient technique to prove that reaction occurred, based on the blue‐shift of the emission from anthracenyl moieties compared with the 9‐vinylanthracene. Thermal transitions were studied by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA) and by fluorescence spectroscopy, indicating that networks with and without lumophores had similar thermal properties. Networks with and without lumophores had the same swelling capability in toluene. Fluorescence spectroscopy was a more sensitive technique to the onset of the glass transition temperature (T = 145 K) than DSC or DMA. Nevertheless, the crystallization temperature at 192 K was determined more precisely by DSC, and the melting point at 237 K was indentified more clearly by both DSC and DMA. These three techniques provided complementary information about transitions in silicone networks. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 74–81, 2010 |
doi_str_mv | 10.1002/polb.21845 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901672495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>901672495</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4125-5e25b603ae9a76cb909f15e286aac88b58e202a733858f31c7d7f65341d72bda3</originalsourceid><addsrcrecordid>eNqFkEtP3DAURq2KSgxDN_yC7CpVyuBH_FoW1BkQw1OturQc50ak9YxTO6NO_j2GlC5hZen6nKvvfgidELwgGNPTPvh6QYmq-Ac0I1jrEldKHaAZVkqWggpxiI5S-oVx_uN6hszS70KE5GDroEg9uCGG5EI_FnbbFMMjxI31RQRv93bowrboY3CQEqQitJkZHqPN8uhLb2vw0BQ5w5g6H_Z2C-kYfWytT_Dp3ztHP5bfvp9flOvb1eX513XpKkJ5yYHyWmBmQVspXK2xbkkeKmGtU6rmCiimVjKmuGoZcbKRreCsIo2kdWPZHH2e9uZ4f3aQBrPp8lHe5xBhl4zGREhaaf4uqbQgSitGM_llIl2uJEVoTR-7jY2jIdg8122e6zYvdWeYTPDfzsP4Bmnubtdnr045OV0aYP_fsfG3EZJJbn7erIy4Flf0Xq_MA3sCZwiTmg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>896189832</pqid></control><display><type>article</type><title>Fluorescence spectroscopy and thermal relaxation processes of anthracenyl-labeled polysiloxanes</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Domingues, Raquel Aparecida ; Yoshida, Inez Valéria Pagotto ; Atvars, Teresa Dib Zambon</creator><creatorcontrib>Domingues, Raquel Aparecida ; Yoshida, Inez Valéria Pagotto ; Atvars, Teresa Dib Zambon</creatorcontrib><description>A fluorescent silicone network was prepared by a hydrosilylation reaction using poly(dimethylsiloxane‐co‐methylhydrogensiloxane) terminated by dimethylhydrogensilyloxy groups, poly(dimethylsiloxane‐co‐methylvinylsiloxane) terminated by dimethylvinylsilyloxy groups and 9‐vinylanthracene, as the fluorescent group. These silicone‐based materials were strongly fluorescent. Steady state emission was a convenient technique to prove that reaction occurred, based on the blue‐shift of the emission from anthracenyl moieties compared with the 9‐vinylanthracene. Thermal transitions were studied by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA) and by fluorescence spectroscopy, indicating that networks with and without lumophores had similar thermal properties. Networks with and without lumophores had the same swelling capability in toluene. Fluorescence spectroscopy was a more sensitive technique to the onset of the glass transition temperature (T = 145 K) than DSC or DMA. Nevertheless, the crystallization temperature at 192 K was determined more precisely by DSC, and the melting point at 237 K was indentified more clearly by both DSC and DMA. These three techniques provided complementary information about transitions in silicone networks. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 74–81, 2010</description><identifier>ISSN: 0887-6266</identifier><identifier>ISSN: 1099-0488</identifier><identifier>EISSN: 1099-0488</identifier><identifier>DOI: 10.1002/polb.21845</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>anthracenyl groups ; Differential scanning calorimetry ; Emission spectroscopy ; Fluorescence ; Hydrosilylation ; Networks ; Reproduction ; Silicones ; Spectroscopy ; Thermal properties ; thermal relaxations</subject><ispartof>Journal of polymer science. Part B, Polymer physics, 2010-01, Vol.48 (1), p.74-81</ispartof><rights>Copyright © 2009 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4125-5e25b603ae9a76cb909f15e286aac88b58e202a733858f31c7d7f65341d72bda3</citedby><cites>FETCH-LOGICAL-c4125-5e25b603ae9a76cb909f15e286aac88b58e202a733858f31c7d7f65341d72bda3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpolb.21845$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpolb.21845$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Domingues, Raquel Aparecida</creatorcontrib><creatorcontrib>Yoshida, Inez Valéria Pagotto</creatorcontrib><creatorcontrib>Atvars, Teresa Dib Zambon</creatorcontrib><title>Fluorescence spectroscopy and thermal relaxation processes of anthracenyl-labeled polysiloxanes</title><title>Journal of polymer science. Part B, Polymer physics</title><addtitle>J. Polym. Sci. B Polym. Phys</addtitle><description>A fluorescent silicone network was prepared by a hydrosilylation reaction using poly(dimethylsiloxane‐co‐methylhydrogensiloxane) terminated by dimethylhydrogensilyloxy groups, poly(dimethylsiloxane‐co‐methylvinylsiloxane) terminated by dimethylvinylsilyloxy groups and 9‐vinylanthracene, as the fluorescent group. These silicone‐based materials were strongly fluorescent. Steady state emission was a convenient technique to prove that reaction occurred, based on the blue‐shift of the emission from anthracenyl moieties compared with the 9‐vinylanthracene. Thermal transitions were studied by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA) and by fluorescence spectroscopy, indicating that networks with and without lumophores had similar thermal properties. Networks with and without lumophores had the same swelling capability in toluene. Fluorescence spectroscopy was a more sensitive technique to the onset of the glass transition temperature (T = 145 K) than DSC or DMA. Nevertheless, the crystallization temperature at 192 K was determined more precisely by DSC, and the melting point at 237 K was indentified more clearly by both DSC and DMA. These three techniques provided complementary information about transitions in silicone networks. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 74–81, 2010</description><subject>anthracenyl groups</subject><subject>Differential scanning calorimetry</subject><subject>Emission spectroscopy</subject><subject>Fluorescence</subject><subject>Hydrosilylation</subject><subject>Networks</subject><subject>Reproduction</subject><subject>Silicones</subject><subject>Spectroscopy</subject><subject>Thermal properties</subject><subject>thermal relaxations</subject><issn>0887-6266</issn><issn>1099-0488</issn><issn>1099-0488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkEtP3DAURq2KSgxDN_yC7CpVyuBH_FoW1BkQw1OturQc50ak9YxTO6NO_j2GlC5hZen6nKvvfgidELwgGNPTPvh6QYmq-Ac0I1jrEldKHaAZVkqWggpxiI5S-oVx_uN6hszS70KE5GDroEg9uCGG5EI_FnbbFMMjxI31RQRv93bowrboY3CQEqQitJkZHqPN8uhLb2vw0BQ5w5g6H_Z2C-kYfWytT_Dp3ztHP5bfvp9flOvb1eX513XpKkJ5yYHyWmBmQVspXK2xbkkeKmGtU6rmCiimVjKmuGoZcbKRreCsIo2kdWPZHH2e9uZ4f3aQBrPp8lHe5xBhl4zGREhaaf4uqbQgSitGM_llIl2uJEVoTR-7jY2jIdg8122e6zYvdWeYTPDfzsP4Bmnubtdnr045OV0aYP_fsfG3EZJJbn7erIy4Flf0Xq_MA3sCZwiTmg</recordid><startdate>201001</startdate><enddate>201001</enddate><creator>Domingues, Raquel Aparecida</creator><creator>Yoshida, Inez Valéria Pagotto</creator><creator>Atvars, Teresa Dib Zambon</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201001</creationdate><title>Fluorescence spectroscopy and thermal relaxation processes of anthracenyl-labeled polysiloxanes</title><author>Domingues, Raquel Aparecida ; Yoshida, Inez Valéria Pagotto ; Atvars, Teresa Dib Zambon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4125-5e25b603ae9a76cb909f15e286aac88b58e202a733858f31c7d7f65341d72bda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>anthracenyl groups</topic><topic>Differential scanning calorimetry</topic><topic>Emission spectroscopy</topic><topic>Fluorescence</topic><topic>Hydrosilylation</topic><topic>Networks</topic><topic>Reproduction</topic><topic>Silicones</topic><topic>Spectroscopy</topic><topic>Thermal properties</topic><topic>thermal relaxations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Domingues, Raquel Aparecida</creatorcontrib><creatorcontrib>Yoshida, Inez Valéria Pagotto</creatorcontrib><creatorcontrib>Atvars, Teresa Dib Zambon</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of polymer science. Part B, Polymer physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Domingues, Raquel Aparecida</au><au>Yoshida, Inez Valéria Pagotto</au><au>Atvars, Teresa Dib Zambon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fluorescence spectroscopy and thermal relaxation processes of anthracenyl-labeled polysiloxanes</atitle><jtitle>Journal of polymer science. Part B, Polymer physics</jtitle><addtitle>J. Polym. Sci. B Polym. Phys</addtitle><date>2010-01</date><risdate>2010</risdate><volume>48</volume><issue>1</issue><spage>74</spage><epage>81</epage><pages>74-81</pages><issn>0887-6266</issn><issn>1099-0488</issn><eissn>1099-0488</eissn><abstract>A fluorescent silicone network was prepared by a hydrosilylation reaction using poly(dimethylsiloxane‐co‐methylhydrogensiloxane) terminated by dimethylhydrogensilyloxy groups, poly(dimethylsiloxane‐co‐methylvinylsiloxane) terminated by dimethylvinylsilyloxy groups and 9‐vinylanthracene, as the fluorescent group. These silicone‐based materials were strongly fluorescent. Steady state emission was a convenient technique to prove that reaction occurred, based on the blue‐shift of the emission from anthracenyl moieties compared with the 9‐vinylanthracene. Thermal transitions were studied by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA) and by fluorescence spectroscopy, indicating that networks with and without lumophores had similar thermal properties. Networks with and without lumophores had the same swelling capability in toluene. Fluorescence spectroscopy was a more sensitive technique to the onset of the glass transition temperature (T = 145 K) than DSC or DMA. Nevertheless, the crystallization temperature at 192 K was determined more precisely by DSC, and the melting point at 237 K was indentified more clearly by both DSC and DMA. These three techniques provided complementary information about transitions in silicone networks. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 74–81, 2010</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/polb.21845</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0887-6266 |
ispartof | Journal of polymer science. Part B, Polymer physics, 2010-01, Vol.48 (1), p.74-81 |
issn | 0887-6266 1099-0488 1099-0488 |
language | eng |
recordid | cdi_proquest_miscellaneous_901672495 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | anthracenyl groups Differential scanning calorimetry Emission spectroscopy Fluorescence Hydrosilylation Networks Reproduction Silicones Spectroscopy Thermal properties thermal relaxations |
title | Fluorescence spectroscopy and thermal relaxation processes of anthracenyl-labeled polysiloxanes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T04%3A01%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fluorescence%20spectroscopy%20and%20thermal%20relaxation%20processes%20of%20anthracenyl-labeled%20polysiloxanes&rft.jtitle=Journal%20of%20polymer%20science.%20Part%20B,%20Polymer%20physics&rft.au=Domingues,%20Raquel%20Aparecida&rft.date=2010-01&rft.volume=48&rft.issue=1&rft.spage=74&rft.epage=81&rft.pages=74-81&rft.issn=0887-6266&rft.eissn=1099-0488&rft_id=info:doi/10.1002/polb.21845&rft_dat=%3Cproquest_cross%3E901672495%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=896189832&rft_id=info:pmid/&rfr_iscdi=true |