Effect of particle agglomeration and interphase on the glass transition temperature of polymer nanocomposites
In this article, we utilize finite element modeling to investigate the effect of nanoparticle agglomeration on the glass transition temperature of polymer nanocomposites. The case of an attractive interaction between polymer and nanofiller is considered for which an interphase domain of gradient pro...
Gespeichert in:
Veröffentlicht in: | Journal of polymer science. Part B, Polymer physics Polymer physics, 2011-05, Vol.49 (10), p.740-748 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 748 |
---|---|
container_issue | 10 |
container_start_page | 740 |
container_title | Journal of polymer science. Part B, Polymer physics |
container_volume | 49 |
creator | Qiao, Rui Deng, Hua Putz, Karl W Brinson, L. Catherine |
description | In this article, we utilize finite element modeling to investigate the effect of nanoparticle agglomeration on the glass transition temperature of polymer nanocomposites. The case of an attractive interaction between polymer and nanofiller is considered for which an interphase domain of gradient properties is developed. This model utilizes representative volume elements that are created and analyzed with varying degrees of nanoparticle clustering and length scale of interphase domain. The viscoelastic properties of the composites are studied using a statistical approach to account for variations due to the random nature of the microstructure. Results show that a monotonic increase in nanofiller clustering not only results in the loss of interphase volume but also obstructs the formation of a percolating interphase network in the nanocomposite. The combined impacts lead to a remarkable decrease of Tg enhancement of clustering nanofillers in comparison with a well-dispersed configuration. Our simulation results provide qualitative support for experimental observations that clustering observed at high nanofiller concentrations negatively impacts the effects of the nanofiller on overall properties. |
doi_str_mv | 10.1002/polb.22236 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901670172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>901670172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4636-ef511d3712771abd286204ab9343225da94b85142538511ed6023a644ace13913</originalsourceid><addsrcrecordid>eNp9kc1u1DAURi0EEkNhwwvgDUJCSvFfHGcJo1KKpi0Cqi6tO87NNODEqZ0RnbevZ1K67OpK9vmOfD8T8pazY86Y-DQGvz4WQkj9jCw4q-uCKWOekwUzpiq00PoleZXSH8byXVkvSH_StugmGlo6Qpw655HCZuNDjxGmLgwUhoZ2w4RxvIGENJ9MN0g3HlKiU4QhdQdswn7cR7YRD7Lgd1lBBxiCC_0YMobpNXnRgk_45mEekauvJ7-X34rV5enZ8vOqcEpLXWBbct7Iiouq4rBuhNGCKVjXUkkhygZqtTYlV6KUeXBsNBMStFLgkMuayyPyYfaOMdxuMU2275JD72HAsE22ZlxXjFcikx9n0sWQUsTWjrHrIe4sZ3Zfqd1Xag-VZvj9gxaSA9_m7V2XHhNCMcOZ2Uv5zP3rPO6eMNofl6sv_93FnOnShHePGYh_ra5kVdrri1O7_H7-89pIZk3m3818C8HCJuZ3XP0Sea_8tVLwupL36kSfEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901670172</pqid></control><display><type>article</type><title>Effect of particle agglomeration and interphase on the glass transition temperature of polymer nanocomposites</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Qiao, Rui ; Deng, Hua ; Putz, Karl W ; Brinson, L. Catherine</creator><creatorcontrib>Qiao, Rui ; Deng, Hua ; Putz, Karl W ; Brinson, L. Catherine</creatorcontrib><description>In this article, we utilize finite element modeling to investigate the effect of nanoparticle agglomeration on the glass transition temperature of polymer nanocomposites. The case of an attractive interaction between polymer and nanofiller is considered for which an interphase domain of gradient properties is developed. This model utilizes representative volume elements that are created and analyzed with varying degrees of nanoparticle clustering and length scale of interphase domain. The viscoelastic properties of the composites are studied using a statistical approach to account for variations due to the random nature of the microstructure. Results show that a monotonic increase in nanofiller clustering not only results in the loss of interphase volume but also obstructs the formation of a percolating interphase network in the nanocomposite. The combined impacts lead to a remarkable decrease of Tg enhancement of clustering nanofillers in comparison with a well-dispersed configuration. Our simulation results provide qualitative support for experimental observations that clustering observed at high nanofiller concentrations negatively impacts the effects of the nanofiller on overall properties.</description><identifier>ISSN: 0887-6266</identifier><identifier>ISSN: 1099-0488</identifier><identifier>EISSN: 1099-0488</identifier><identifier>DOI: 10.1002/polb.22236</identifier><identifier>CODEN: JPLPAY</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Agglomeration ; Applied sciences ; Clustering ; clustering degree ; Composites ; Exact sciences and technology ; filler reinforcement ; finite element modeling ; finite element simulations ; Forms of application and semi-finished materials ; Glass transition temperature ; Interphase ; interphase network ; interphase percolation ; Mathematical models ; microstructure ; Nanocomposites ; Nanomaterials ; nanoparticles ; Nanostructure ; particle distribution ; Polymer industry, paints, wood ; polymer nanocomposites ; polymers ; Technology of polymers ; viscoelastic properties ; viscoelasticity</subject><ispartof>Journal of polymer science. Part B, Polymer physics, 2011-05, Vol.49 (10), p.740-748</ispartof><rights>Copyright © 2011 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4636-ef511d3712771abd286204ab9343225da94b85142538511ed6023a644ace13913</citedby><cites>FETCH-LOGICAL-c4636-ef511d3712771abd286204ab9343225da94b85142538511ed6023a644ace13913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpolb.22236$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpolb.22236$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24081082$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Qiao, Rui</creatorcontrib><creatorcontrib>Deng, Hua</creatorcontrib><creatorcontrib>Putz, Karl W</creatorcontrib><creatorcontrib>Brinson, L. Catherine</creatorcontrib><title>Effect of particle agglomeration and interphase on the glass transition temperature of polymer nanocomposites</title><title>Journal of polymer science. Part B, Polymer physics</title><addtitle>J. Polym. Sci. B Polym. Phys</addtitle><description>In this article, we utilize finite element modeling to investigate the effect of nanoparticle agglomeration on the glass transition temperature of polymer nanocomposites. The case of an attractive interaction between polymer and nanofiller is considered for which an interphase domain of gradient properties is developed. This model utilizes representative volume elements that are created and analyzed with varying degrees of nanoparticle clustering and length scale of interphase domain. The viscoelastic properties of the composites are studied using a statistical approach to account for variations due to the random nature of the microstructure. Results show that a monotonic increase in nanofiller clustering not only results in the loss of interphase volume but also obstructs the formation of a percolating interphase network in the nanocomposite. The combined impacts lead to a remarkable decrease of Tg enhancement of clustering nanofillers in comparison with a well-dispersed configuration. Our simulation results provide qualitative support for experimental observations that clustering observed at high nanofiller concentrations negatively impacts the effects of the nanofiller on overall properties.</description><subject>Agglomeration</subject><subject>Applied sciences</subject><subject>Clustering</subject><subject>clustering degree</subject><subject>Composites</subject><subject>Exact sciences and technology</subject><subject>filler reinforcement</subject><subject>finite element modeling</subject><subject>finite element simulations</subject><subject>Forms of application and semi-finished materials</subject><subject>Glass transition temperature</subject><subject>Interphase</subject><subject>interphase network</subject><subject>interphase percolation</subject><subject>Mathematical models</subject><subject>microstructure</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>nanoparticles</subject><subject>Nanostructure</subject><subject>particle distribution</subject><subject>Polymer industry, paints, wood</subject><subject>polymer nanocomposites</subject><subject>polymers</subject><subject>Technology of polymers</subject><subject>viscoelastic properties</subject><subject>viscoelasticity</subject><issn>0887-6266</issn><issn>1099-0488</issn><issn>1099-0488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1DAURi0EEkNhwwvgDUJCSvFfHGcJo1KKpi0Cqi6tO87NNODEqZ0RnbevZ1K67OpK9vmOfD8T8pazY86Y-DQGvz4WQkj9jCw4q-uCKWOekwUzpiq00PoleZXSH8byXVkvSH_StugmGlo6Qpw655HCZuNDjxGmLgwUhoZ2w4RxvIGENJ9MN0g3HlKiU4QhdQdswn7cR7YRD7Lgd1lBBxiCC_0YMobpNXnRgk_45mEekauvJ7-X34rV5enZ8vOqcEpLXWBbct7Iiouq4rBuhNGCKVjXUkkhygZqtTYlV6KUeXBsNBMStFLgkMuayyPyYfaOMdxuMU2275JD72HAsE22ZlxXjFcikx9n0sWQUsTWjrHrIe4sZ3Zfqd1Xag-VZvj9gxaSA9_m7V2XHhNCMcOZ2Uv5zP3rPO6eMNofl6sv_93FnOnShHePGYh_ra5kVdrri1O7_H7-89pIZk3m3818C8HCJuZ3XP0Sea_8tVLwupL36kSfEg</recordid><startdate>20110515</startdate><enddate>20110515</enddate><creator>Qiao, Rui</creator><creator>Deng, Hua</creator><creator>Putz, Karl W</creator><creator>Brinson, L. Catherine</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20110515</creationdate><title>Effect of particle agglomeration and interphase on the glass transition temperature of polymer nanocomposites</title><author>Qiao, Rui ; Deng, Hua ; Putz, Karl W ; Brinson, L. Catherine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4636-ef511d3712771abd286204ab9343225da94b85142538511ed6023a644ace13913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Agglomeration</topic><topic>Applied sciences</topic><topic>Clustering</topic><topic>clustering degree</topic><topic>Composites</topic><topic>Exact sciences and technology</topic><topic>filler reinforcement</topic><topic>finite element modeling</topic><topic>finite element simulations</topic><topic>Forms of application and semi-finished materials</topic><topic>Glass transition temperature</topic><topic>Interphase</topic><topic>interphase network</topic><topic>interphase percolation</topic><topic>Mathematical models</topic><topic>microstructure</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>nanoparticles</topic><topic>Nanostructure</topic><topic>particle distribution</topic><topic>Polymer industry, paints, wood</topic><topic>polymer nanocomposites</topic><topic>polymers</topic><topic>Technology of polymers</topic><topic>viscoelastic properties</topic><topic>viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiao, Rui</creatorcontrib><creatorcontrib>Deng, Hua</creatorcontrib><creatorcontrib>Putz, Karl W</creatorcontrib><creatorcontrib>Brinson, L. Catherine</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of polymer science. Part B, Polymer physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiao, Rui</au><au>Deng, Hua</au><au>Putz, Karl W</au><au>Brinson, L. Catherine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of particle agglomeration and interphase on the glass transition temperature of polymer nanocomposites</atitle><jtitle>Journal of polymer science. Part B, Polymer physics</jtitle><addtitle>J. Polym. Sci. B Polym. Phys</addtitle><date>2011-05-15</date><risdate>2011</risdate><volume>49</volume><issue>10</issue><spage>740</spage><epage>748</epage><pages>740-748</pages><issn>0887-6266</issn><issn>1099-0488</issn><eissn>1099-0488</eissn><coden>JPLPAY</coden><abstract>In this article, we utilize finite element modeling to investigate the effect of nanoparticle agglomeration on the glass transition temperature of polymer nanocomposites. The case of an attractive interaction between polymer and nanofiller is considered for which an interphase domain of gradient properties is developed. This model utilizes representative volume elements that are created and analyzed with varying degrees of nanoparticle clustering and length scale of interphase domain. The viscoelastic properties of the composites are studied using a statistical approach to account for variations due to the random nature of the microstructure. Results show that a monotonic increase in nanofiller clustering not only results in the loss of interphase volume but also obstructs the formation of a percolating interphase network in the nanocomposite. The combined impacts lead to a remarkable decrease of Tg enhancement of clustering nanofillers in comparison with a well-dispersed configuration. Our simulation results provide qualitative support for experimental observations that clustering observed at high nanofiller concentrations negatively impacts the effects of the nanofiller on overall properties.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/polb.22236</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0887-6266 |
ispartof | Journal of polymer science. Part B, Polymer physics, 2011-05, Vol.49 (10), p.740-748 |
issn | 0887-6266 1099-0488 1099-0488 |
language | eng |
recordid | cdi_proquest_miscellaneous_901670172 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Agglomeration Applied sciences Clustering clustering degree Composites Exact sciences and technology filler reinforcement finite element modeling finite element simulations Forms of application and semi-finished materials Glass transition temperature Interphase interphase network interphase percolation Mathematical models microstructure Nanocomposites Nanomaterials nanoparticles Nanostructure particle distribution Polymer industry, paints, wood polymer nanocomposites polymers Technology of polymers viscoelastic properties viscoelasticity |
title | Effect of particle agglomeration and interphase on the glass transition temperature of polymer nanocomposites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A53%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20particle%20agglomeration%20and%20interphase%20on%20the%20glass%20transition%20temperature%20of%20polymer%20nanocomposites&rft.jtitle=Journal%20of%20polymer%20science.%20Part%20B,%20Polymer%20physics&rft.au=Qiao,%20Rui&rft.date=2011-05-15&rft.volume=49&rft.issue=10&rft.spage=740&rft.epage=748&rft.pages=740-748&rft.issn=0887-6266&rft.eissn=1099-0488&rft.coden=JPLPAY&rft_id=info:doi/10.1002/polb.22236&rft_dat=%3Cproquest_cross%3E901670172%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=901670172&rft_id=info:pmid/&rfr_iscdi=true |