Effect of particle agglomeration and interphase on the glass transition temperature of polymer nanocomposites

In this article, we utilize finite element modeling to investigate the effect of nanoparticle agglomeration on the glass transition temperature of polymer nanocomposites. The case of an attractive interaction between polymer and nanofiller is considered for which an interphase domain of gradient pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of polymer science. Part B, Polymer physics Polymer physics, 2011-05, Vol.49 (10), p.740-748
Hauptverfasser: Qiao, Rui, Deng, Hua, Putz, Karl W, Brinson, L. Catherine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 748
container_issue 10
container_start_page 740
container_title Journal of polymer science. Part B, Polymer physics
container_volume 49
creator Qiao, Rui
Deng, Hua
Putz, Karl W
Brinson, L. Catherine
description In this article, we utilize finite element modeling to investigate the effect of nanoparticle agglomeration on the glass transition temperature of polymer nanocomposites. The case of an attractive interaction between polymer and nanofiller is considered for which an interphase domain of gradient properties is developed. This model utilizes representative volume elements that are created and analyzed with varying degrees of nanoparticle clustering and length scale of interphase domain. The viscoelastic properties of the composites are studied using a statistical approach to account for variations due to the random nature of the microstructure. Results show that a monotonic increase in nanofiller clustering not only results in the loss of interphase volume but also obstructs the formation of a percolating interphase network in the nanocomposite. The combined impacts lead to a remarkable decrease of Tg enhancement of clustering nanofillers in comparison with a well-dispersed configuration. Our simulation results provide qualitative support for experimental observations that clustering observed at high nanofiller concentrations negatively impacts the effects of the nanofiller on overall properties.
doi_str_mv 10.1002/polb.22236
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901670172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>901670172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4636-ef511d3712771abd286204ab9343225da94b85142538511ed6023a644ace13913</originalsourceid><addsrcrecordid>eNp9kc1u1DAURi0EEkNhwwvgDUJCSvFfHGcJo1KKpi0Cqi6tO87NNODEqZ0RnbevZ1K67OpK9vmOfD8T8pazY86Y-DQGvz4WQkj9jCw4q-uCKWOekwUzpiq00PoleZXSH8byXVkvSH_StugmGlo6Qpw655HCZuNDjxGmLgwUhoZ2w4RxvIGENJ9MN0g3HlKiU4QhdQdswn7cR7YRD7Lgd1lBBxiCC_0YMobpNXnRgk_45mEekauvJ7-X34rV5enZ8vOqcEpLXWBbct7Iiouq4rBuhNGCKVjXUkkhygZqtTYlV6KUeXBsNBMStFLgkMuayyPyYfaOMdxuMU2275JD72HAsE22ZlxXjFcikx9n0sWQUsTWjrHrIe4sZ3Zfqd1Xag-VZvj9gxaSA9_m7V2XHhNCMcOZ2Uv5zP3rPO6eMNofl6sv_93FnOnShHePGYh_ra5kVdrri1O7_H7-89pIZk3m3818C8HCJuZ3XP0Sea_8tVLwupL36kSfEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901670172</pqid></control><display><type>article</type><title>Effect of particle agglomeration and interphase on the glass transition temperature of polymer nanocomposites</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Qiao, Rui ; Deng, Hua ; Putz, Karl W ; Brinson, L. Catherine</creator><creatorcontrib>Qiao, Rui ; Deng, Hua ; Putz, Karl W ; Brinson, L. Catherine</creatorcontrib><description>In this article, we utilize finite element modeling to investigate the effect of nanoparticle agglomeration on the glass transition temperature of polymer nanocomposites. The case of an attractive interaction between polymer and nanofiller is considered for which an interphase domain of gradient properties is developed. This model utilizes representative volume elements that are created and analyzed with varying degrees of nanoparticle clustering and length scale of interphase domain. The viscoelastic properties of the composites are studied using a statistical approach to account for variations due to the random nature of the microstructure. Results show that a monotonic increase in nanofiller clustering not only results in the loss of interphase volume but also obstructs the formation of a percolating interphase network in the nanocomposite. The combined impacts lead to a remarkable decrease of Tg enhancement of clustering nanofillers in comparison with a well-dispersed configuration. Our simulation results provide qualitative support for experimental observations that clustering observed at high nanofiller concentrations negatively impacts the effects of the nanofiller on overall properties.</description><identifier>ISSN: 0887-6266</identifier><identifier>ISSN: 1099-0488</identifier><identifier>EISSN: 1099-0488</identifier><identifier>DOI: 10.1002/polb.22236</identifier><identifier>CODEN: JPLPAY</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Agglomeration ; Applied sciences ; Clustering ; clustering degree ; Composites ; Exact sciences and technology ; filler reinforcement ; finite element modeling ; finite element simulations ; Forms of application and semi-finished materials ; Glass transition temperature ; Interphase ; interphase network ; interphase percolation ; Mathematical models ; microstructure ; Nanocomposites ; Nanomaterials ; nanoparticles ; Nanostructure ; particle distribution ; Polymer industry, paints, wood ; polymer nanocomposites ; polymers ; Technology of polymers ; viscoelastic properties ; viscoelasticity</subject><ispartof>Journal of polymer science. Part B, Polymer physics, 2011-05, Vol.49 (10), p.740-748</ispartof><rights>Copyright © 2011 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4636-ef511d3712771abd286204ab9343225da94b85142538511ed6023a644ace13913</citedby><cites>FETCH-LOGICAL-c4636-ef511d3712771abd286204ab9343225da94b85142538511ed6023a644ace13913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpolb.22236$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpolb.22236$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24081082$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Qiao, Rui</creatorcontrib><creatorcontrib>Deng, Hua</creatorcontrib><creatorcontrib>Putz, Karl W</creatorcontrib><creatorcontrib>Brinson, L. Catherine</creatorcontrib><title>Effect of particle agglomeration and interphase on the glass transition temperature of polymer nanocomposites</title><title>Journal of polymer science. Part B, Polymer physics</title><addtitle>J. Polym. Sci. B Polym. Phys</addtitle><description>In this article, we utilize finite element modeling to investigate the effect of nanoparticle agglomeration on the glass transition temperature of polymer nanocomposites. The case of an attractive interaction between polymer and nanofiller is considered for which an interphase domain of gradient properties is developed. This model utilizes representative volume elements that are created and analyzed with varying degrees of nanoparticle clustering and length scale of interphase domain. The viscoelastic properties of the composites are studied using a statistical approach to account for variations due to the random nature of the microstructure. Results show that a monotonic increase in nanofiller clustering not only results in the loss of interphase volume but also obstructs the formation of a percolating interphase network in the nanocomposite. The combined impacts lead to a remarkable decrease of Tg enhancement of clustering nanofillers in comparison with a well-dispersed configuration. Our simulation results provide qualitative support for experimental observations that clustering observed at high nanofiller concentrations negatively impacts the effects of the nanofiller on overall properties.</description><subject>Agglomeration</subject><subject>Applied sciences</subject><subject>Clustering</subject><subject>clustering degree</subject><subject>Composites</subject><subject>Exact sciences and technology</subject><subject>filler reinforcement</subject><subject>finite element modeling</subject><subject>finite element simulations</subject><subject>Forms of application and semi-finished materials</subject><subject>Glass transition temperature</subject><subject>Interphase</subject><subject>interphase network</subject><subject>interphase percolation</subject><subject>Mathematical models</subject><subject>microstructure</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>nanoparticles</subject><subject>Nanostructure</subject><subject>particle distribution</subject><subject>Polymer industry, paints, wood</subject><subject>polymer nanocomposites</subject><subject>polymers</subject><subject>Technology of polymers</subject><subject>viscoelastic properties</subject><subject>viscoelasticity</subject><issn>0887-6266</issn><issn>1099-0488</issn><issn>1099-0488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1DAURi0EEkNhwwvgDUJCSvFfHGcJo1KKpi0Cqi6tO87NNODEqZ0RnbevZ1K67OpK9vmOfD8T8pazY86Y-DQGvz4WQkj9jCw4q-uCKWOekwUzpiq00PoleZXSH8byXVkvSH_StugmGlo6Qpw655HCZuNDjxGmLgwUhoZ2w4RxvIGENJ9MN0g3HlKiU4QhdQdswn7cR7YRD7Lgd1lBBxiCC_0YMobpNXnRgk_45mEekauvJ7-X34rV5enZ8vOqcEpLXWBbct7Iiouq4rBuhNGCKVjXUkkhygZqtTYlV6KUeXBsNBMStFLgkMuayyPyYfaOMdxuMU2275JD72HAsE22ZlxXjFcikx9n0sWQUsTWjrHrIe4sZ3Zfqd1Xag-VZvj9gxaSA9_m7V2XHhNCMcOZ2Uv5zP3rPO6eMNofl6sv_93FnOnShHePGYh_ra5kVdrri1O7_H7-89pIZk3m3818C8HCJuZ3XP0Sea_8tVLwupL36kSfEg</recordid><startdate>20110515</startdate><enddate>20110515</enddate><creator>Qiao, Rui</creator><creator>Deng, Hua</creator><creator>Putz, Karl W</creator><creator>Brinson, L. Catherine</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20110515</creationdate><title>Effect of particle agglomeration and interphase on the glass transition temperature of polymer nanocomposites</title><author>Qiao, Rui ; Deng, Hua ; Putz, Karl W ; Brinson, L. Catherine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4636-ef511d3712771abd286204ab9343225da94b85142538511ed6023a644ace13913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Agglomeration</topic><topic>Applied sciences</topic><topic>Clustering</topic><topic>clustering degree</topic><topic>Composites</topic><topic>Exact sciences and technology</topic><topic>filler reinforcement</topic><topic>finite element modeling</topic><topic>finite element simulations</topic><topic>Forms of application and semi-finished materials</topic><topic>Glass transition temperature</topic><topic>Interphase</topic><topic>interphase network</topic><topic>interphase percolation</topic><topic>Mathematical models</topic><topic>microstructure</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>nanoparticles</topic><topic>Nanostructure</topic><topic>particle distribution</topic><topic>Polymer industry, paints, wood</topic><topic>polymer nanocomposites</topic><topic>polymers</topic><topic>Technology of polymers</topic><topic>viscoelastic properties</topic><topic>viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiao, Rui</creatorcontrib><creatorcontrib>Deng, Hua</creatorcontrib><creatorcontrib>Putz, Karl W</creatorcontrib><creatorcontrib>Brinson, L. Catherine</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of polymer science. Part B, Polymer physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiao, Rui</au><au>Deng, Hua</au><au>Putz, Karl W</au><au>Brinson, L. Catherine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of particle agglomeration and interphase on the glass transition temperature of polymer nanocomposites</atitle><jtitle>Journal of polymer science. Part B, Polymer physics</jtitle><addtitle>J. Polym. Sci. B Polym. Phys</addtitle><date>2011-05-15</date><risdate>2011</risdate><volume>49</volume><issue>10</issue><spage>740</spage><epage>748</epage><pages>740-748</pages><issn>0887-6266</issn><issn>1099-0488</issn><eissn>1099-0488</eissn><coden>JPLPAY</coden><abstract>In this article, we utilize finite element modeling to investigate the effect of nanoparticle agglomeration on the glass transition temperature of polymer nanocomposites. The case of an attractive interaction between polymer and nanofiller is considered for which an interphase domain of gradient properties is developed. This model utilizes representative volume elements that are created and analyzed with varying degrees of nanoparticle clustering and length scale of interphase domain. The viscoelastic properties of the composites are studied using a statistical approach to account for variations due to the random nature of the microstructure. Results show that a monotonic increase in nanofiller clustering not only results in the loss of interphase volume but also obstructs the formation of a percolating interphase network in the nanocomposite. The combined impacts lead to a remarkable decrease of Tg enhancement of clustering nanofillers in comparison with a well-dispersed configuration. Our simulation results provide qualitative support for experimental observations that clustering observed at high nanofiller concentrations negatively impacts the effects of the nanofiller on overall properties.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/polb.22236</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0887-6266
ispartof Journal of polymer science. Part B, Polymer physics, 2011-05, Vol.49 (10), p.740-748
issn 0887-6266
1099-0488
1099-0488
language eng
recordid cdi_proquest_miscellaneous_901670172
source Wiley Online Library Journals Frontfile Complete
subjects Agglomeration
Applied sciences
Clustering
clustering degree
Composites
Exact sciences and technology
filler reinforcement
finite element modeling
finite element simulations
Forms of application and semi-finished materials
Glass transition temperature
Interphase
interphase network
interphase percolation
Mathematical models
microstructure
Nanocomposites
Nanomaterials
nanoparticles
Nanostructure
particle distribution
Polymer industry, paints, wood
polymer nanocomposites
polymers
Technology of polymers
viscoelastic properties
viscoelasticity
title Effect of particle agglomeration and interphase on the glass transition temperature of polymer nanocomposites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A53%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20particle%20agglomeration%20and%20interphase%20on%20the%20glass%20transition%20temperature%20of%20polymer%20nanocomposites&rft.jtitle=Journal%20of%20polymer%20science.%20Part%20B,%20Polymer%20physics&rft.au=Qiao,%20Rui&rft.date=2011-05-15&rft.volume=49&rft.issue=10&rft.spage=740&rft.epage=748&rft.pages=740-748&rft.issn=0887-6266&rft.eissn=1099-0488&rft.coden=JPLPAY&rft_id=info:doi/10.1002/polb.22236&rft_dat=%3Cproquest_cross%3E901670172%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=901670172&rft_id=info:pmid/&rfr_iscdi=true