Hydrogen production from ethanol over Co/ZnO catalyst in a multi-layered reformer

A Co/ZnO catalyst was prepared by coprecipitation method, and was applied for ethanol steam reforming. The effect of reaction conditions on the ethanol steam reforming performance was studied in the temperature ranges from 400 °C to 600 °C and the space velocity ranges from 10,000 h −1 to 120,000 h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of hydrogen energy 2010-02, Vol.35 (3), p.1147-1151
Hauptverfasser: Lee, Yong-Kul, Kim, Kyoung-Suk, Ahn, Jin-Goo, Son, In-Hyuk, Shin, Woo Cheol
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1151
container_issue 3
container_start_page 1147
container_title International journal of hydrogen energy
container_volume 35
creator Lee, Yong-Kul
Kim, Kyoung-Suk
Ahn, Jin-Goo
Son, In-Hyuk
Shin, Woo Cheol
description A Co/ZnO catalyst was prepared by coprecipitation method, and was applied for ethanol steam reforming. The effect of reaction conditions on the ethanol steam reforming performance was studied in the temperature ranges from 400 °C to 600 °C and the space velocity ranges from 10,000 h −1 to 120,000 h −1 in a fixed bed reactor. The Co/ZnO showed high activity with an ethanol conversion of 97% and a H 2 concentration of 73% at a gas hourly space velocity of 40,000 h −1 and a moderately low temperature of 450 °C. EXAFS analysis for fresh and spent samples confirms that Co phase maintains during reaction. The catalyst was then loaded into a multi-layered reformer of which the design concept allows for integrating endothermic steam reforming, exothermic combustion and evaporation in a reactor. The performance of the compact reformer demonstrated that the hydrogen production rate satisfy a PEMFC stack power level of 540 W suitable for portable power supplies.
doi_str_mv 10.1016/j.ijhydene.2009.11.035
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901668813</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360319909018047</els_id><sourcerecordid>901668813</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-74d99ee38b67cdef19deb7b1d5a8eb879df213f7b19ab9d4ef2457a4a5d11ef83</originalsourceid><addsrcrecordid>eNqFkEFr3DAQhUVpIds0fyHoUnqyV2NpbevWsLTdQCAU2ksuQpZGjRZb2kjegP99tWySa04Dw3vz3nyEXAOrgUG73td-_7hYDFg3jMkaoGZ884GsoO9kxUXffSQrxltWcZDygnzOec8YdEzIFfm9W2yK_zDQQ4r2aGYfA3UpThTnRx3iSOMzJrqN64dwT42e9bjkmfpANZ2O4-yrUS-Y0NKELqYJ0xfyyekx49XLvCR_f_74s91Vd_e_brc3d5URgs1VJ6yUiLwf2s5YdCAtDt0AdqN7HEpz6xrgrmykHqQV6Bqx6bTQGwuArueX5Nv5bin-dMQ8q8lng-OoA8ZjVrKwafseeFG2Z6VJMefSUx2Sn3RaFDB1Qqj26hWhOiFUAKogLMavLxE6Gz26pIPx-c3dNIKXCCi672cdln-fPSaVjcdg0PqEZlY2-vei_gMwUYxb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901668813</pqid></control><display><type>article</type><title>Hydrogen production from ethanol over Co/ZnO catalyst in a multi-layered reformer</title><source>Elsevier ScienceDirect Journals</source><creator>Lee, Yong-Kul ; Kim, Kyoung-Suk ; Ahn, Jin-Goo ; Son, In-Hyuk ; Shin, Woo Cheol</creator><creatorcontrib>Lee, Yong-Kul ; Kim, Kyoung-Suk ; Ahn, Jin-Goo ; Son, In-Hyuk ; Shin, Woo Cheol</creatorcontrib><description>A Co/ZnO catalyst was prepared by coprecipitation method, and was applied for ethanol steam reforming. The effect of reaction conditions on the ethanol steam reforming performance was studied in the temperature ranges from 400 °C to 600 °C and the space velocity ranges from 10,000 h −1 to 120,000 h −1 in a fixed bed reactor. The Co/ZnO showed high activity with an ethanol conversion of 97% and a H 2 concentration of 73% at a gas hourly space velocity of 40,000 h −1 and a moderately low temperature of 450 °C. EXAFS analysis for fresh and spent samples confirms that Co phase maintains during reaction. The catalyst was then loaded into a multi-layered reformer of which the design concept allows for integrating endothermic steam reforming, exothermic combustion and evaporation in a reactor. The performance of the compact reformer demonstrated that the hydrogen production rate satisfy a PEMFC stack power level of 540 W suitable for portable power supplies.</description><identifier>ISSN: 0360-3199</identifier><identifier>EISSN: 1879-3487</identifier><identifier>DOI: 10.1016/j.ijhydene.2009.11.035</identifier><identifier>CODEN: IJHEDX</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Alternative fuels. Production and utilization ; Applied sciences ; Catalysts ; Co/ZnO catalyst ; Energy ; Ethanol ; Ethyl alcohol ; Exact sciences and technology ; Fuels ; Hydrogen ; Hydrogen production ; Reactors ; Reformer ; Reforming ; Steam electric power generation ; Steam reforming ; Zinc oxide</subject><ispartof>International journal of hydrogen energy, 2010-02, Vol.35 (3), p.1147-1151</ispartof><rights>2009 Professor T. Nejat Veziroglu</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-74d99ee38b67cdef19deb7b1d5a8eb879df213f7b19ab9d4ef2457a4a5d11ef83</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0360319909018047$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22436681$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Yong-Kul</creatorcontrib><creatorcontrib>Kim, Kyoung-Suk</creatorcontrib><creatorcontrib>Ahn, Jin-Goo</creatorcontrib><creatorcontrib>Son, In-Hyuk</creatorcontrib><creatorcontrib>Shin, Woo Cheol</creatorcontrib><title>Hydrogen production from ethanol over Co/ZnO catalyst in a multi-layered reformer</title><title>International journal of hydrogen energy</title><description>A Co/ZnO catalyst was prepared by coprecipitation method, and was applied for ethanol steam reforming. The effect of reaction conditions on the ethanol steam reforming performance was studied in the temperature ranges from 400 °C to 600 °C and the space velocity ranges from 10,000 h −1 to 120,000 h −1 in a fixed bed reactor. The Co/ZnO showed high activity with an ethanol conversion of 97% and a H 2 concentration of 73% at a gas hourly space velocity of 40,000 h −1 and a moderately low temperature of 450 °C. EXAFS analysis for fresh and spent samples confirms that Co phase maintains during reaction. The catalyst was then loaded into a multi-layered reformer of which the design concept allows for integrating endothermic steam reforming, exothermic combustion and evaporation in a reactor. The performance of the compact reformer demonstrated that the hydrogen production rate satisfy a PEMFC stack power level of 540 W suitable for portable power supplies.</description><subject>Alternative fuels. Production and utilization</subject><subject>Applied sciences</subject><subject>Catalysts</subject><subject>Co/ZnO catalyst</subject><subject>Energy</subject><subject>Ethanol</subject><subject>Ethyl alcohol</subject><subject>Exact sciences and technology</subject><subject>Fuels</subject><subject>Hydrogen</subject><subject>Hydrogen production</subject><subject>Reactors</subject><subject>Reformer</subject><subject>Reforming</subject><subject>Steam electric power generation</subject><subject>Steam reforming</subject><subject>Zinc oxide</subject><issn>0360-3199</issn><issn>1879-3487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkEFr3DAQhUVpIds0fyHoUnqyV2NpbevWsLTdQCAU2ksuQpZGjRZb2kjegP99tWySa04Dw3vz3nyEXAOrgUG73td-_7hYDFg3jMkaoGZ884GsoO9kxUXffSQrxltWcZDygnzOec8YdEzIFfm9W2yK_zDQQ4r2aGYfA3UpThTnRx3iSOMzJrqN64dwT42e9bjkmfpANZ2O4-yrUS-Y0NKELqYJ0xfyyekx49XLvCR_f_74s91Vd_e_brc3d5URgs1VJ6yUiLwf2s5YdCAtDt0AdqN7HEpz6xrgrmykHqQV6Bqx6bTQGwuArueX5Nv5bin-dMQ8q8lng-OoA8ZjVrKwafseeFG2Z6VJMefSUx2Sn3RaFDB1Qqj26hWhOiFUAKogLMavLxE6Gz26pIPx-c3dNIKXCCi672cdln-fPSaVjcdg0PqEZlY2-vei_gMwUYxb</recordid><startdate>20100201</startdate><enddate>20100201</enddate><creator>Lee, Yong-Kul</creator><creator>Kim, Kyoung-Suk</creator><creator>Ahn, Jin-Goo</creator><creator>Son, In-Hyuk</creator><creator>Shin, Woo Cheol</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20100201</creationdate><title>Hydrogen production from ethanol over Co/ZnO catalyst in a multi-layered reformer</title><author>Lee, Yong-Kul ; Kim, Kyoung-Suk ; Ahn, Jin-Goo ; Son, In-Hyuk ; Shin, Woo Cheol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-74d99ee38b67cdef19deb7b1d5a8eb879df213f7b19ab9d4ef2457a4a5d11ef83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Alternative fuels. Production and utilization</topic><topic>Applied sciences</topic><topic>Catalysts</topic><topic>Co/ZnO catalyst</topic><topic>Energy</topic><topic>Ethanol</topic><topic>Ethyl alcohol</topic><topic>Exact sciences and technology</topic><topic>Fuels</topic><topic>Hydrogen</topic><topic>Hydrogen production</topic><topic>Reactors</topic><topic>Reformer</topic><topic>Reforming</topic><topic>Steam electric power generation</topic><topic>Steam reforming</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Yong-Kul</creatorcontrib><creatorcontrib>Kim, Kyoung-Suk</creatorcontrib><creatorcontrib>Ahn, Jin-Goo</creatorcontrib><creatorcontrib>Son, In-Hyuk</creatorcontrib><creatorcontrib>Shin, Woo Cheol</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of hydrogen energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Yong-Kul</au><au>Kim, Kyoung-Suk</au><au>Ahn, Jin-Goo</au><au>Son, In-Hyuk</au><au>Shin, Woo Cheol</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogen production from ethanol over Co/ZnO catalyst in a multi-layered reformer</atitle><jtitle>International journal of hydrogen energy</jtitle><date>2010-02-01</date><risdate>2010</risdate><volume>35</volume><issue>3</issue><spage>1147</spage><epage>1151</epage><pages>1147-1151</pages><issn>0360-3199</issn><eissn>1879-3487</eissn><coden>IJHEDX</coden><abstract>A Co/ZnO catalyst was prepared by coprecipitation method, and was applied for ethanol steam reforming. The effect of reaction conditions on the ethanol steam reforming performance was studied in the temperature ranges from 400 °C to 600 °C and the space velocity ranges from 10,000 h −1 to 120,000 h −1 in a fixed bed reactor. The Co/ZnO showed high activity with an ethanol conversion of 97% and a H 2 concentration of 73% at a gas hourly space velocity of 40,000 h −1 and a moderately low temperature of 450 °C. EXAFS analysis for fresh and spent samples confirms that Co phase maintains during reaction. The catalyst was then loaded into a multi-layered reformer of which the design concept allows for integrating endothermic steam reforming, exothermic combustion and evaporation in a reactor. The performance of the compact reformer demonstrated that the hydrogen production rate satisfy a PEMFC stack power level of 540 W suitable for portable power supplies.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijhydene.2009.11.035</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0360-3199
ispartof International journal of hydrogen energy, 2010-02, Vol.35 (3), p.1147-1151
issn 0360-3199
1879-3487
language eng
recordid cdi_proquest_miscellaneous_901668813
source Elsevier ScienceDirect Journals
subjects Alternative fuels. Production and utilization
Applied sciences
Catalysts
Co/ZnO catalyst
Energy
Ethanol
Ethyl alcohol
Exact sciences and technology
Fuels
Hydrogen
Hydrogen production
Reactors
Reformer
Reforming
Steam electric power generation
Steam reforming
Zinc oxide
title Hydrogen production from ethanol over Co/ZnO catalyst in a multi-layered reformer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T19%3A09%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogen%20production%20from%20ethanol%20over%20Co/ZnO%20catalyst%20in%20a%20multi-layered%20reformer&rft.jtitle=International%20journal%20of%20hydrogen%20energy&rft.au=Lee,%20Yong-Kul&rft.date=2010-02-01&rft.volume=35&rft.issue=3&rft.spage=1147&rft.epage=1151&rft.pages=1147-1151&rft.issn=0360-3199&rft.eissn=1879-3487&rft.coden=IJHEDX&rft_id=info:doi/10.1016/j.ijhydene.2009.11.035&rft_dat=%3Cproquest_cross%3E901668813%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=901668813&rft_id=info:pmid/&rft_els_id=S0360319909018047&rfr_iscdi=true