Modelling of an lower-extremity prostheses and its ankle trajectory control

In this survey, solid work model and strength analysis of lower-extremity prostheses with ankle trajectory control depending on hip angle measurement as reference motion, is introduced. After modelling and designing of certain prosthesis and its parts, strength analysis under various pedestal loads...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomechanics 2011-01, Vol.44, p.5-5
Hauptverfasser: Baser, Ozgun, Cetin, Levent, Uyar, Erol, Yumer, Lyutvi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue
container_start_page 5
container_title Journal of biomechanics
container_volume 44
creator Baser, Ozgun
Cetin, Levent
Uyar, Erol
Yumer, Lyutvi
description In this survey, solid work model and strength analysis of lower-extremity prostheses with ankle trajectory control depending on hip angle measurement as reference motion, is introduced. After modelling and designing of certain prosthesis and its parts, strength analysis under various pedestal loads are given, to ensure optimal and convenient prostheses. A mathematical model for bipedal walking is then executed as a combination of two serial manipulators, each having two revolute joints, in other words, having two degrees of freedom. Inverse kinematics analysis and recursive Newton–Euler computation methods are given to obtain the dynamic equations, which describe the motion of the walking system. For desired walking characteristics, hip and ankle trajectories are derived. As ankle joint actuator in the system a permanent magnet direct current (DC) servo-motor with position feedback and its state space representation is given. By using the hip trajectory as reference the relevant angular position of ankle joint is calculated and is realised via DC motor. With this novel method besides ankle joint even the knee joint positions in the case of upper knee amputees can be determined for various gait instants. With these calculated values optimal ankle and knee trajectories can be realised via DC Servo motors. Thus best gait conditions for relevant prostheses and patients can be determined and evaluated. For future works this kind of a method may be very efficient solution in tracking problem of bipedal walking with under knee prostheses to obtain a quasi-natural walking.
doi_str_mv 10.1016/j.jbiomech.2011.02.030
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901668462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0021929011001229</els_id><sourcerecordid>901668462</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2192-1517c6de22cca87818e8c04a1749e6d151529fddb14fdbe05b028c08f8fb346e3</originalsourceid><addsrcrecordid>eNqFUU1v1DAQtRBILIW_gCJx6CnpjJ0P54JaVYUiijjQnq3EnrROs3FrZ4H990y0RUi9cJrDvPf0PoR4j1AgYH0yFmPvw5bsXSEBsQBZgIIXYoO6UblUGl6KDYDEvJUtvBZvUhoBoCmbdiO-fguOpsnPt1kYsm7OpvCLYk6_l0hbv-yzhxjSckeJEn9d5pf13k-ULbEbyS4h7jMb5iWG6a14NXRTondP90jcfLq4Pr_Mr75__nJ-dpVbia3MscLG1o6ktLbTjUZN2kLZYVO2VDt-V7IdnOuxHFxPUPUgGaAHPfSqrEkdieODLnt73FFazNYnyym6mcIumZZbqXVZS0Z-eIYcwy7ObM4gqAqhUqViVH1AWc6aIg3mIfptF_cMMmvFZjR_KzZrxQak4YqZeHogEqf96SmaZD3NlpyPXI1xwf9f4uMzCctjeNtN97Sn9M-uSUwwP9Yd1xkRAVDKVv0BsVKcmQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1035105343</pqid></control><display><type>article</type><title>Modelling of an lower-extremity prostheses and its ankle trajectory control</title><source>Access via ScienceDirect (Elsevier)</source><source>ProQuest Central UK/Ireland</source><creator>Baser, Ozgun ; Cetin, Levent ; Uyar, Erol ; Yumer, Lyutvi</creator><creatorcontrib>Baser, Ozgun ; Cetin, Levent ; Uyar, Erol ; Yumer, Lyutvi</creatorcontrib><description>In this survey, solid work model and strength analysis of lower-extremity prostheses with ankle trajectory control depending on hip angle measurement as reference motion, is introduced. After modelling and designing of certain prosthesis and its parts, strength analysis under various pedestal loads are given, to ensure optimal and convenient prostheses. A mathematical model for bipedal walking is then executed as a combination of two serial manipulators, each having two revolute joints, in other words, having two degrees of freedom. Inverse kinematics analysis and recursive Newton–Euler computation methods are given to obtain the dynamic equations, which describe the motion of the walking system. For desired walking characteristics, hip and ankle trajectories are derived. As ankle joint actuator in the system a permanent magnet direct current (DC) servo-motor with position feedback and its state space representation is given. By using the hip trajectory as reference the relevant angular position of ankle joint is calculated and is realised via DC motor. With this novel method besides ankle joint even the knee joint positions in the case of upper knee amputees can be determined for various gait instants. With these calculated values optimal ankle and knee trajectories can be realised via DC Servo motors. Thus best gait conditions for relevant prostheses and patients can be determined and evaluated. For future works this kind of a method may be very efficient solution in tracking problem of bipedal walking with under knee prostheses to obtain a quasi-natural walking.</description><identifier>ISSN: 0021-9290</identifier><identifier>EISSN: 1873-2380</identifier><identifier>DOI: 10.1016/j.jbiomech.2011.02.030</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Bipedal walking ; Dynamical systems ; Feed forward compensation ; Inverse kinematics analysis ; Knees ; Mathematical models ; Physical Medicine and Rehabilitation ; Prostheses ; Prosthetics ; Recursive Newton–Euler computation ; Surgical implants ; Trajectories ; Trajectory planning ; Walking</subject><ispartof>Journal of biomechanics, 2011-01, Vol.44, p.5-5</ispartof><rights>2011</rights><rights>Copyright Elsevier Limited 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1035105343?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995,64385,64387,64389,72469</link.rule.ids></links><search><creatorcontrib>Baser, Ozgun</creatorcontrib><creatorcontrib>Cetin, Levent</creatorcontrib><creatorcontrib>Uyar, Erol</creatorcontrib><creatorcontrib>Yumer, Lyutvi</creatorcontrib><title>Modelling of an lower-extremity prostheses and its ankle trajectory control</title><title>Journal of biomechanics</title><description>In this survey, solid work model and strength analysis of lower-extremity prostheses with ankle trajectory control depending on hip angle measurement as reference motion, is introduced. After modelling and designing of certain prosthesis and its parts, strength analysis under various pedestal loads are given, to ensure optimal and convenient prostheses. A mathematical model for bipedal walking is then executed as a combination of two serial manipulators, each having two revolute joints, in other words, having two degrees of freedom. Inverse kinematics analysis and recursive Newton–Euler computation methods are given to obtain the dynamic equations, which describe the motion of the walking system. For desired walking characteristics, hip and ankle trajectories are derived. As ankle joint actuator in the system a permanent magnet direct current (DC) servo-motor with position feedback and its state space representation is given. By using the hip trajectory as reference the relevant angular position of ankle joint is calculated and is realised via DC motor. With this novel method besides ankle joint even the knee joint positions in the case of upper knee amputees can be determined for various gait instants. With these calculated values optimal ankle and knee trajectories can be realised via DC Servo motors. Thus best gait conditions for relevant prostheses and patients can be determined and evaluated. For future works this kind of a method may be very efficient solution in tracking problem of bipedal walking with under knee prostheses to obtain a quasi-natural walking.</description><subject>Bipedal walking</subject><subject>Dynamical systems</subject><subject>Feed forward compensation</subject><subject>Inverse kinematics analysis</subject><subject>Knees</subject><subject>Mathematical models</subject><subject>Physical Medicine and Rehabilitation</subject><subject>Prostheses</subject><subject>Prosthetics</subject><subject>Recursive Newton–Euler computation</subject><subject>Surgical implants</subject><subject>Trajectories</subject><subject>Trajectory planning</subject><subject>Walking</subject><issn>0021-9290</issn><issn>1873-2380</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFUU1v1DAQtRBILIW_gCJx6CnpjJ0P54JaVYUiijjQnq3EnrROs3FrZ4H990y0RUi9cJrDvPf0PoR4j1AgYH0yFmPvw5bsXSEBsQBZgIIXYoO6UblUGl6KDYDEvJUtvBZvUhoBoCmbdiO-fguOpsnPt1kYsm7OpvCLYk6_l0hbv-yzhxjSckeJEn9d5pf13k-ULbEbyS4h7jMb5iWG6a14NXRTondP90jcfLq4Pr_Mr75__nJ-dpVbia3MscLG1o6ktLbTjUZN2kLZYVO2VDt-V7IdnOuxHFxPUPUgGaAHPfSqrEkdieODLnt73FFazNYnyym6mcIumZZbqXVZS0Z-eIYcwy7ObM4gqAqhUqViVH1AWc6aIg3mIfptF_cMMmvFZjR_KzZrxQak4YqZeHogEqf96SmaZD3NlpyPXI1xwf9f4uMzCctjeNtN97Sn9M-uSUwwP9Yd1xkRAVDKVv0BsVKcmQ</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Baser, Ozgun</creator><creator>Cetin, Levent</creator><creator>Uyar, Erol</creator><creator>Yumer, Lyutvi</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TB</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20110101</creationdate><title>Modelling of an lower-extremity prostheses and its ankle trajectory control</title><author>Baser, Ozgun ; Cetin, Levent ; Uyar, Erol ; Yumer, Lyutvi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2192-1517c6de22cca87818e8c04a1749e6d151529fddb14fdbe05b028c08f8fb346e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Bipedal walking</topic><topic>Dynamical systems</topic><topic>Feed forward compensation</topic><topic>Inverse kinematics analysis</topic><topic>Knees</topic><topic>Mathematical models</topic><topic>Physical Medicine and Rehabilitation</topic><topic>Prostheses</topic><topic>Prosthetics</topic><topic>Recursive Newton–Euler computation</topic><topic>Surgical implants</topic><topic>Trajectories</topic><topic>Trajectory planning</topic><topic>Walking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baser, Ozgun</creatorcontrib><creatorcontrib>Cetin, Levent</creatorcontrib><creatorcontrib>Uyar, Erol</creatorcontrib><creatorcontrib>Yumer, Lyutvi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of biomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baser, Ozgun</au><au>Cetin, Levent</au><au>Uyar, Erol</au><au>Yumer, Lyutvi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling of an lower-extremity prostheses and its ankle trajectory control</atitle><jtitle>Journal of biomechanics</jtitle><date>2011-01-01</date><risdate>2011</risdate><volume>44</volume><spage>5</spage><epage>5</epage><pages>5-5</pages><issn>0021-9290</issn><eissn>1873-2380</eissn><abstract>In this survey, solid work model and strength analysis of lower-extremity prostheses with ankle trajectory control depending on hip angle measurement as reference motion, is introduced. After modelling and designing of certain prosthesis and its parts, strength analysis under various pedestal loads are given, to ensure optimal and convenient prostheses. A mathematical model for bipedal walking is then executed as a combination of two serial manipulators, each having two revolute joints, in other words, having two degrees of freedom. Inverse kinematics analysis and recursive Newton–Euler computation methods are given to obtain the dynamic equations, which describe the motion of the walking system. For desired walking characteristics, hip and ankle trajectories are derived. As ankle joint actuator in the system a permanent magnet direct current (DC) servo-motor with position feedback and its state space representation is given. By using the hip trajectory as reference the relevant angular position of ankle joint is calculated and is realised via DC motor. With this novel method besides ankle joint even the knee joint positions in the case of upper knee amputees can be determined for various gait instants. With these calculated values optimal ankle and knee trajectories can be realised via DC Servo motors. Thus best gait conditions for relevant prostheses and patients can be determined and evaluated. For future works this kind of a method may be very efficient solution in tracking problem of bipedal walking with under knee prostheses to obtain a quasi-natural walking.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jbiomech.2011.02.030</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9290
ispartof Journal of biomechanics, 2011-01, Vol.44, p.5-5
issn 0021-9290
1873-2380
language eng
recordid cdi_proquest_miscellaneous_901668462
source Access via ScienceDirect (Elsevier); ProQuest Central UK/Ireland
subjects Bipedal walking
Dynamical systems
Feed forward compensation
Inverse kinematics analysis
Knees
Mathematical models
Physical Medicine and Rehabilitation
Prostheses
Prosthetics
Recursive Newton–Euler computation
Surgical implants
Trajectories
Trajectory planning
Walking
title Modelling of an lower-extremity prostheses and its ankle trajectory control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T00%3A18%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20of%20an%20lower-extremity%20prostheses%20and%20its%20ankle%20trajectory%20control&rft.jtitle=Journal%20of%20biomechanics&rft.au=Baser,%20Ozgun&rft.date=2011-01-01&rft.volume=44&rft.spage=5&rft.epage=5&rft.pages=5-5&rft.issn=0021-9290&rft.eissn=1873-2380&rft_id=info:doi/10.1016/j.jbiomech.2011.02.030&rft_dat=%3Cproquest_cross%3E901668462%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1035105343&rft_id=info:pmid/&rft_els_id=1_s2_0_S0021929011001229&rfr_iscdi=true