Thermodynamic analysis and parametric study of a closed Brayton cycle thermal management system for scramjet
A closed Brayton cycle thermal management system is proposed for a regeneratively cooled scramjet to reduce the hydrogen fuel flow for cooling, through converting part of the heat from fuel to other forms of energy to decrease the heat that must be taken away by hydrogen fuel. Fuel heat sink (coolin...
Gespeichert in:
Veröffentlicht in: | International journal of hydrogen energy 2010, Vol.35 (1), p.356-364 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 364 |
---|---|
container_issue | 1 |
container_start_page | 356 |
container_title | International journal of hydrogen energy |
container_volume | 35 |
creator | Qin, Jiang Zhou, Weixing Bao, Wen Yu, Daren |
description | A closed Brayton cycle thermal management system is proposed for a regeneratively cooled scramjet to reduce the hydrogen fuel flow for cooling, through converting part of the heat from fuel to other forms of energy to decrease the heat that must be taken away by hydrogen fuel. Fuel heat sink (cooling capacity) is thus indirectly increased. Instead of carrying excess fuel for cooling or seeking for any new coolant, the fuel flow for cooling is reduced, and fuel onboard is adequate to satisfy the cooling requirement for the whole hypersonic vehicle. A parametric study of an irreversible closed Brayton cycle thermal management system for scramjet has been performed with external as well as internal irreversibilities. It is known through performance analyses that closed Brayton cycle thermal management system has excellent potential performance over conventional regenerative cooling, due to the reduction in fuel flow for cooling and additional power output. |
doi_str_mv | 10.1016/j.ijhydene.2009.09.025 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901667448</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360319909014335</els_id><sourcerecordid>901667448</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-87be069481ee2e983f72f4f8c2d5085313e81ff17240ac602055d8301fceee343</originalsourceid><addsrcrecordid>eNqFUEtr3DAQFiWFbtL-haJL6ckbvWzLtzQhbQOBXtKzUKVRIyNbG4024H9fm01yLQzMMHyPmY-Qz5ztOePd5biP4-PiYYa9YGzYbyXad2THdT80Uun-jOyY7Fgj-TB8IOeII2O8Z2rYkfTwCGXKfpntFB21s00LRlwHTw-22AlqWfdYj36hOVBLXcoInl4Xu9Q8U7e4BLRuKjbRaRX4CxPMleKCFSYacqHoVqER6kfyPtiE8OmlX5Df328fbn42979-3N18u2-c7FVtdP8HWDcozQEEDFqGXgQVtBO-ZbqVXILmIfBeKGZdxwRrW68l48EBgFTygnw96R5KfjoCVjNFdJCSnSEf0QxrbF2vlF6R3QnpSkYsEMyhxMmWxXBmtnTNaF7TNVu6ZivRrsQvLxYWnU2h2NlFfGMLITvVtdspVyccrP8-RygGXYTZgY8FXDU-x_9Z_QMJs5Vs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901667448</pqid></control><display><type>article</type><title>Thermodynamic analysis and parametric study of a closed Brayton cycle thermal management system for scramjet</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Qin, Jiang ; Zhou, Weixing ; Bao, Wen ; Yu, Daren</creator><creatorcontrib>Qin, Jiang ; Zhou, Weixing ; Bao, Wen ; Yu, Daren</creatorcontrib><description>A closed Brayton cycle thermal management system is proposed for a regeneratively cooled scramjet to reduce the hydrogen fuel flow for cooling, through converting part of the heat from fuel to other forms of energy to decrease the heat that must be taken away by hydrogen fuel. Fuel heat sink (cooling capacity) is thus indirectly increased. Instead of carrying excess fuel for cooling or seeking for any new coolant, the fuel flow for cooling is reduced, and fuel onboard is adequate to satisfy the cooling requirement for the whole hypersonic vehicle. A parametric study of an irreversible closed Brayton cycle thermal management system for scramjet has been performed with external as well as internal irreversibilities. It is known through performance analyses that closed Brayton cycle thermal management system has excellent potential performance over conventional regenerative cooling, due to the reduction in fuel flow for cooling and additional power output.</description><identifier>ISSN: 0360-3199</identifier><identifier>EISSN: 1879-3487</identifier><identifier>DOI: 10.1016/j.ijhydene.2009.09.025</identifier><identifier>CODEN: IJHEDX</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Brayton cycle ; Cooling ; Cooling systems ; Energy ; Energy. Thermal use of fuels ; Engines and turbines ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fuel flow ; Fuels ; Heat sink ; Hydrogen ; Hydrogen fuels ; Regenerative cooling ; Scramjet ; Scramjets ; Thermal management ; Thermal management system</subject><ispartof>International journal of hydrogen energy, 2010, Vol.35 (1), p.356-364</ispartof><rights>2009 Professor T. Nejat Veziroglu</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-87be069481ee2e983f72f4f8c2d5085313e81ff17240ac602055d8301fceee343</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijhydene.2009.09.025$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,4025,27928,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22364654$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Qin, Jiang</creatorcontrib><creatorcontrib>Zhou, Weixing</creatorcontrib><creatorcontrib>Bao, Wen</creatorcontrib><creatorcontrib>Yu, Daren</creatorcontrib><title>Thermodynamic analysis and parametric study of a closed Brayton cycle thermal management system for scramjet</title><title>International journal of hydrogen energy</title><description>A closed Brayton cycle thermal management system is proposed for a regeneratively cooled scramjet to reduce the hydrogen fuel flow for cooling, through converting part of the heat from fuel to other forms of energy to decrease the heat that must be taken away by hydrogen fuel. Fuel heat sink (cooling capacity) is thus indirectly increased. Instead of carrying excess fuel for cooling or seeking for any new coolant, the fuel flow for cooling is reduced, and fuel onboard is adequate to satisfy the cooling requirement for the whole hypersonic vehicle. A parametric study of an irreversible closed Brayton cycle thermal management system for scramjet has been performed with external as well as internal irreversibilities. It is known through performance analyses that closed Brayton cycle thermal management system has excellent potential performance over conventional regenerative cooling, due to the reduction in fuel flow for cooling and additional power output.</description><subject>Applied sciences</subject><subject>Brayton cycle</subject><subject>Cooling</subject><subject>Cooling systems</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Engines and turbines</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fuel flow</subject><subject>Fuels</subject><subject>Heat sink</subject><subject>Hydrogen</subject><subject>Hydrogen fuels</subject><subject>Regenerative cooling</subject><subject>Scramjet</subject><subject>Scramjets</subject><subject>Thermal management</subject><subject>Thermal management system</subject><issn>0360-3199</issn><issn>1879-3487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFUEtr3DAQFiWFbtL-haJL6ckbvWzLtzQhbQOBXtKzUKVRIyNbG4024H9fm01yLQzMMHyPmY-Qz5ztOePd5biP4-PiYYa9YGzYbyXad2THdT80Uun-jOyY7Fgj-TB8IOeII2O8Z2rYkfTwCGXKfpntFB21s00LRlwHTw-22AlqWfdYj36hOVBLXcoInl4Xu9Q8U7e4BLRuKjbRaRX4CxPMleKCFSYacqHoVqER6kfyPtiE8OmlX5Df328fbn42979-3N18u2-c7FVtdP8HWDcozQEEDFqGXgQVtBO-ZbqVXILmIfBeKGZdxwRrW68l48EBgFTygnw96R5KfjoCVjNFdJCSnSEf0QxrbF2vlF6R3QnpSkYsEMyhxMmWxXBmtnTNaF7TNVu6ZivRrsQvLxYWnU2h2NlFfGMLITvVtdspVyccrP8-RygGXYTZgY8FXDU-x_9Z_QMJs5Vs</recordid><startdate>2010</startdate><enddate>2010</enddate><creator>Qin, Jiang</creator><creator>Zhou, Weixing</creator><creator>Bao, Wen</creator><creator>Yu, Daren</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>2010</creationdate><title>Thermodynamic analysis and parametric study of a closed Brayton cycle thermal management system for scramjet</title><author>Qin, Jiang ; Zhou, Weixing ; Bao, Wen ; Yu, Daren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-87be069481ee2e983f72f4f8c2d5085313e81ff17240ac602055d8301fceee343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Brayton cycle</topic><topic>Cooling</topic><topic>Cooling systems</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Engines and turbines</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fuel flow</topic><topic>Fuels</topic><topic>Heat sink</topic><topic>Hydrogen</topic><topic>Hydrogen fuels</topic><topic>Regenerative cooling</topic><topic>Scramjet</topic><topic>Scramjets</topic><topic>Thermal management</topic><topic>Thermal management system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qin, Jiang</creatorcontrib><creatorcontrib>Zhou, Weixing</creatorcontrib><creatorcontrib>Bao, Wen</creatorcontrib><creatorcontrib>Yu, Daren</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of hydrogen energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qin, Jiang</au><au>Zhou, Weixing</au><au>Bao, Wen</au><au>Yu, Daren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamic analysis and parametric study of a closed Brayton cycle thermal management system for scramjet</atitle><jtitle>International journal of hydrogen energy</jtitle><date>2010</date><risdate>2010</risdate><volume>35</volume><issue>1</issue><spage>356</spage><epage>364</epage><pages>356-364</pages><issn>0360-3199</issn><eissn>1879-3487</eissn><coden>IJHEDX</coden><abstract>A closed Brayton cycle thermal management system is proposed for a regeneratively cooled scramjet to reduce the hydrogen fuel flow for cooling, through converting part of the heat from fuel to other forms of energy to decrease the heat that must be taken away by hydrogen fuel. Fuel heat sink (cooling capacity) is thus indirectly increased. Instead of carrying excess fuel for cooling or seeking for any new coolant, the fuel flow for cooling is reduced, and fuel onboard is adequate to satisfy the cooling requirement for the whole hypersonic vehicle. A parametric study of an irreversible closed Brayton cycle thermal management system for scramjet has been performed with external as well as internal irreversibilities. It is known through performance analyses that closed Brayton cycle thermal management system has excellent potential performance over conventional regenerative cooling, due to the reduction in fuel flow for cooling and additional power output.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijhydene.2009.09.025</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-3199 |
ispartof | International journal of hydrogen energy, 2010, Vol.35 (1), p.356-364 |
issn | 0360-3199 1879-3487 |
language | eng |
recordid | cdi_proquest_miscellaneous_901667448 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Applied sciences Brayton cycle Cooling Cooling systems Energy Energy. Thermal use of fuels Engines and turbines Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology Fuel flow Fuels Heat sink Hydrogen Hydrogen fuels Regenerative cooling Scramjet Scramjets Thermal management Thermal management system |
title | Thermodynamic analysis and parametric study of a closed Brayton cycle thermal management system for scramjet |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T05%3A37%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamic%20analysis%20and%20parametric%20study%20of%20a%20closed%20Brayton%20cycle%20thermal%20management%20system%20for%20scramjet&rft.jtitle=International%20journal%20of%20hydrogen%20energy&rft.au=Qin,%20Jiang&rft.date=2010&rft.volume=35&rft.issue=1&rft.spage=356&rft.epage=364&rft.pages=356-364&rft.issn=0360-3199&rft.eissn=1879-3487&rft.coden=IJHEDX&rft_id=info:doi/10.1016/j.ijhydene.2009.09.025&rft_dat=%3Cproquest_cross%3E901667448%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=901667448&rft_id=info:pmid/&rft_els_id=S0360319909014335&rfr_iscdi=true |