Thermodynamic analysis and parametric study of a closed Brayton cycle thermal management system for scramjet

A closed Brayton cycle thermal management system is proposed for a regeneratively cooled scramjet to reduce the hydrogen fuel flow for cooling, through converting part of the heat from fuel to other forms of energy to decrease the heat that must be taken away by hydrogen fuel. Fuel heat sink (coolin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of hydrogen energy 2010, Vol.35 (1), p.356-364
Hauptverfasser: Qin, Jiang, Zhou, Weixing, Bao, Wen, Yu, Daren
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 364
container_issue 1
container_start_page 356
container_title International journal of hydrogen energy
container_volume 35
creator Qin, Jiang
Zhou, Weixing
Bao, Wen
Yu, Daren
description A closed Brayton cycle thermal management system is proposed for a regeneratively cooled scramjet to reduce the hydrogen fuel flow for cooling, through converting part of the heat from fuel to other forms of energy to decrease the heat that must be taken away by hydrogen fuel. Fuel heat sink (cooling capacity) is thus indirectly increased. Instead of carrying excess fuel for cooling or seeking for any new coolant, the fuel flow for cooling is reduced, and fuel onboard is adequate to satisfy the cooling requirement for the whole hypersonic vehicle. A parametric study of an irreversible closed Brayton cycle thermal management system for scramjet has been performed with external as well as internal irreversibilities. It is known through performance analyses that closed Brayton cycle thermal management system has excellent potential performance over conventional regenerative cooling, due to the reduction in fuel flow for cooling and additional power output.
doi_str_mv 10.1016/j.ijhydene.2009.09.025
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901667448</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360319909014335</els_id><sourcerecordid>901667448</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-87be069481ee2e983f72f4f8c2d5085313e81ff17240ac602055d8301fceee343</originalsourceid><addsrcrecordid>eNqFUEtr3DAQFiWFbtL-haJL6ckbvWzLtzQhbQOBXtKzUKVRIyNbG4024H9fm01yLQzMMHyPmY-Qz5ztOePd5biP4-PiYYa9YGzYbyXad2THdT80Uun-jOyY7Fgj-TB8IOeII2O8Z2rYkfTwCGXKfpntFB21s00LRlwHTw-22AlqWfdYj36hOVBLXcoInl4Xu9Q8U7e4BLRuKjbRaRX4CxPMleKCFSYacqHoVqER6kfyPtiE8OmlX5Df328fbn42979-3N18u2-c7FVtdP8HWDcozQEEDFqGXgQVtBO-ZbqVXILmIfBeKGZdxwRrW68l48EBgFTygnw96R5KfjoCVjNFdJCSnSEf0QxrbF2vlF6R3QnpSkYsEMyhxMmWxXBmtnTNaF7TNVu6ZivRrsQvLxYWnU2h2NlFfGMLITvVtdspVyccrP8-RygGXYTZgY8FXDU-x_9Z_QMJs5Vs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901667448</pqid></control><display><type>article</type><title>Thermodynamic analysis and parametric study of a closed Brayton cycle thermal management system for scramjet</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Qin, Jiang ; Zhou, Weixing ; Bao, Wen ; Yu, Daren</creator><creatorcontrib>Qin, Jiang ; Zhou, Weixing ; Bao, Wen ; Yu, Daren</creatorcontrib><description>A closed Brayton cycle thermal management system is proposed for a regeneratively cooled scramjet to reduce the hydrogen fuel flow for cooling, through converting part of the heat from fuel to other forms of energy to decrease the heat that must be taken away by hydrogen fuel. Fuel heat sink (cooling capacity) is thus indirectly increased. Instead of carrying excess fuel for cooling or seeking for any new coolant, the fuel flow for cooling is reduced, and fuel onboard is adequate to satisfy the cooling requirement for the whole hypersonic vehicle. A parametric study of an irreversible closed Brayton cycle thermal management system for scramjet has been performed with external as well as internal irreversibilities. It is known through performance analyses that closed Brayton cycle thermal management system has excellent potential performance over conventional regenerative cooling, due to the reduction in fuel flow for cooling and additional power output.</description><identifier>ISSN: 0360-3199</identifier><identifier>EISSN: 1879-3487</identifier><identifier>DOI: 10.1016/j.ijhydene.2009.09.025</identifier><identifier>CODEN: IJHEDX</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Brayton cycle ; Cooling ; Cooling systems ; Energy ; Energy. Thermal use of fuels ; Engines and turbines ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fuel flow ; Fuels ; Heat sink ; Hydrogen ; Hydrogen fuels ; Regenerative cooling ; Scramjet ; Scramjets ; Thermal management ; Thermal management system</subject><ispartof>International journal of hydrogen energy, 2010, Vol.35 (1), p.356-364</ispartof><rights>2009 Professor T. Nejat Veziroglu</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-87be069481ee2e983f72f4f8c2d5085313e81ff17240ac602055d8301fceee343</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijhydene.2009.09.025$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,4025,27928,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22364654$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Qin, Jiang</creatorcontrib><creatorcontrib>Zhou, Weixing</creatorcontrib><creatorcontrib>Bao, Wen</creatorcontrib><creatorcontrib>Yu, Daren</creatorcontrib><title>Thermodynamic analysis and parametric study of a closed Brayton cycle thermal management system for scramjet</title><title>International journal of hydrogen energy</title><description>A closed Brayton cycle thermal management system is proposed for a regeneratively cooled scramjet to reduce the hydrogen fuel flow for cooling, through converting part of the heat from fuel to other forms of energy to decrease the heat that must be taken away by hydrogen fuel. Fuel heat sink (cooling capacity) is thus indirectly increased. Instead of carrying excess fuel for cooling or seeking for any new coolant, the fuel flow for cooling is reduced, and fuel onboard is adequate to satisfy the cooling requirement for the whole hypersonic vehicle. A parametric study of an irreversible closed Brayton cycle thermal management system for scramjet has been performed with external as well as internal irreversibilities. It is known through performance analyses that closed Brayton cycle thermal management system has excellent potential performance over conventional regenerative cooling, due to the reduction in fuel flow for cooling and additional power output.</description><subject>Applied sciences</subject><subject>Brayton cycle</subject><subject>Cooling</subject><subject>Cooling systems</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Engines and turbines</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fuel flow</subject><subject>Fuels</subject><subject>Heat sink</subject><subject>Hydrogen</subject><subject>Hydrogen fuels</subject><subject>Regenerative cooling</subject><subject>Scramjet</subject><subject>Scramjets</subject><subject>Thermal management</subject><subject>Thermal management system</subject><issn>0360-3199</issn><issn>1879-3487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFUEtr3DAQFiWFbtL-haJL6ckbvWzLtzQhbQOBXtKzUKVRIyNbG4024H9fm01yLQzMMHyPmY-Qz5ztOePd5biP4-PiYYa9YGzYbyXad2THdT80Uun-jOyY7Fgj-TB8IOeII2O8Z2rYkfTwCGXKfpntFB21s00LRlwHTw-22AlqWfdYj36hOVBLXcoInl4Xu9Q8U7e4BLRuKjbRaRX4CxPMleKCFSYacqHoVqER6kfyPtiE8OmlX5Df328fbn42979-3N18u2-c7FVtdP8HWDcozQEEDFqGXgQVtBO-ZbqVXILmIfBeKGZdxwRrW68l48EBgFTygnw96R5KfjoCVjNFdJCSnSEf0QxrbF2vlF6R3QnpSkYsEMyhxMmWxXBmtnTNaF7TNVu6ZivRrsQvLxYWnU2h2NlFfGMLITvVtdspVyccrP8-RygGXYTZgY8FXDU-x_9Z_QMJs5Vs</recordid><startdate>2010</startdate><enddate>2010</enddate><creator>Qin, Jiang</creator><creator>Zhou, Weixing</creator><creator>Bao, Wen</creator><creator>Yu, Daren</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>2010</creationdate><title>Thermodynamic analysis and parametric study of a closed Brayton cycle thermal management system for scramjet</title><author>Qin, Jiang ; Zhou, Weixing ; Bao, Wen ; Yu, Daren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-87be069481ee2e983f72f4f8c2d5085313e81ff17240ac602055d8301fceee343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Brayton cycle</topic><topic>Cooling</topic><topic>Cooling systems</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Engines and turbines</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fuel flow</topic><topic>Fuels</topic><topic>Heat sink</topic><topic>Hydrogen</topic><topic>Hydrogen fuels</topic><topic>Regenerative cooling</topic><topic>Scramjet</topic><topic>Scramjets</topic><topic>Thermal management</topic><topic>Thermal management system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qin, Jiang</creatorcontrib><creatorcontrib>Zhou, Weixing</creatorcontrib><creatorcontrib>Bao, Wen</creatorcontrib><creatorcontrib>Yu, Daren</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of hydrogen energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qin, Jiang</au><au>Zhou, Weixing</au><au>Bao, Wen</au><au>Yu, Daren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamic analysis and parametric study of a closed Brayton cycle thermal management system for scramjet</atitle><jtitle>International journal of hydrogen energy</jtitle><date>2010</date><risdate>2010</risdate><volume>35</volume><issue>1</issue><spage>356</spage><epage>364</epage><pages>356-364</pages><issn>0360-3199</issn><eissn>1879-3487</eissn><coden>IJHEDX</coden><abstract>A closed Brayton cycle thermal management system is proposed for a regeneratively cooled scramjet to reduce the hydrogen fuel flow for cooling, through converting part of the heat from fuel to other forms of energy to decrease the heat that must be taken away by hydrogen fuel. Fuel heat sink (cooling capacity) is thus indirectly increased. Instead of carrying excess fuel for cooling or seeking for any new coolant, the fuel flow for cooling is reduced, and fuel onboard is adequate to satisfy the cooling requirement for the whole hypersonic vehicle. A parametric study of an irreversible closed Brayton cycle thermal management system for scramjet has been performed with external as well as internal irreversibilities. It is known through performance analyses that closed Brayton cycle thermal management system has excellent potential performance over conventional regenerative cooling, due to the reduction in fuel flow for cooling and additional power output.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijhydene.2009.09.025</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0360-3199
ispartof International journal of hydrogen energy, 2010, Vol.35 (1), p.356-364
issn 0360-3199
1879-3487
language eng
recordid cdi_proquest_miscellaneous_901667448
source ScienceDirect Journals (5 years ago - present)
subjects Applied sciences
Brayton cycle
Cooling
Cooling systems
Energy
Energy. Thermal use of fuels
Engines and turbines
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Fuel flow
Fuels
Heat sink
Hydrogen
Hydrogen fuels
Regenerative cooling
Scramjet
Scramjets
Thermal management
Thermal management system
title Thermodynamic analysis and parametric study of a closed Brayton cycle thermal management system for scramjet
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T05%3A37%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamic%20analysis%20and%20parametric%20study%20of%20a%20closed%20Brayton%20cycle%20thermal%20management%20system%20for%20scramjet&rft.jtitle=International%20journal%20of%20hydrogen%20energy&rft.au=Qin,%20Jiang&rft.date=2010&rft.volume=35&rft.issue=1&rft.spage=356&rft.epage=364&rft.pages=356-364&rft.issn=0360-3199&rft.eissn=1879-3487&rft.coden=IJHEDX&rft_id=info:doi/10.1016/j.ijhydene.2009.09.025&rft_dat=%3Cproquest_cross%3E901667448%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=901667448&rft_id=info:pmid/&rft_els_id=S0360319909014335&rfr_iscdi=true