An introduction to phase-field modeling of microstructure evolution
The phase-field method has become an important and extremely versatile technique for simulating microstructure evolution at the mesoscale. Thanks to the diffuse-interface approach, it allows us to study the evolution of arbitrary complex grain morphologies without any presumption on their shape or m...
Gespeichert in:
Veröffentlicht in: | Calphad 2008-06, Vol.32 (2), p.268-294 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 294 |
---|---|
container_issue | 2 |
container_start_page | 268 |
container_title | Calphad |
container_volume | 32 |
creator | Moelans, Nele Blanpain, Bart Wollants, Patrick |
description | The phase-field method has become an important and extremely versatile technique for simulating microstructure evolution at the mesoscale. Thanks to the diffuse-interface approach, it allows us to study the evolution of arbitrary complex grain morphologies without any presumption on their shape or mutual distribution. It is also straightforward to account for different thermodynamic driving forces for microstructure evolution, such as bulk and interfacial energy, elastic energy and electric or magnetic energy, and the effect of different transport processes, such as mass diffusion, heat conduction and convection. The purpose of the paper is to give an introduction to the phase-field modeling technique. The concept of diffuse interfaces, the phase-field variables, the thermodynamic driving force for microstructure evolution and the kinetic phase-field equations are introduced. Furthermore, common techniques for parameter determination and numerical solution of the equations are discussed. To show the variety in phase-field models, different model formulations are exploited, depending on which is most common or most illustrative. |
doi_str_mv | 10.1016/j.calphad.2007.11.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901664574</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0364591607000880</els_id><sourcerecordid>33578120</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-6a4fe3290a4eb478a5dc6eb40ec9a3caf3d28d0d47321c7fb16ae6ed3f24f10e3</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-BKEX9dSar6btSZZl_YAFL3oO2WSiWdpmTdoF_70pu3jU0wzM884wD0LXBBcEE3G_LbRqd5_KFBTjqiCkwJidoBmpK5bTpuanaIaZ4HnZEHGOLmLc4gQyxmdouegz1w_Bm1EPzvfZ4LO0KkJuHbQm67yB1vUfmbdZ53TwcQiJHANksPftOGUu0ZlVbYSrY52j98fV2_I5X78-vSwX61xzUQ-5UNwCow1WHDa8qlVptEgdBt0oppVlhtYGG14xSnRlN0QoEGCYpdwSDGyO7g57d8F_jRAH2bmooW1VD36MskkyBC8rnsjbP0nGyqomFCewPIDTZzGAlbvgOhW-JcFykiu38ihXTnIlITLJTbmb4wEV09wG1WsXf8MUc9YIQhP3cOAgedk7CDJqB70G4wLoQRrv_rn0A8_fk1k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>33578120</pqid></control><display><type>article</type><title>An introduction to phase-field modeling of microstructure evolution</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Moelans, Nele ; Blanpain, Bart ; Wollants, Patrick</creator><creatorcontrib>Moelans, Nele ; Blanpain, Bart ; Wollants, Patrick</creatorcontrib><description>The phase-field method has become an important and extremely versatile technique for simulating microstructure evolution at the mesoscale. Thanks to the diffuse-interface approach, it allows us to study the evolution of arbitrary complex grain morphologies without any presumption on their shape or mutual distribution. It is also straightforward to account for different thermodynamic driving forces for microstructure evolution, such as bulk and interfacial energy, elastic energy and electric or magnetic energy, and the effect of different transport processes, such as mass diffusion, heat conduction and convection. The purpose of the paper is to give an introduction to the phase-field modeling technique. The concept of diffuse interfaces, the phase-field variables, the thermodynamic driving force for microstructure evolution and the kinetic phase-field equations are introduced. Furthermore, common techniques for parameter determination and numerical solution of the equations are discussed. To show the variety in phase-field models, different model formulations are exploited, depending on which is most common or most illustrative.</description><identifier>ISSN: 0364-5916</identifier><identifier>EISSN: 1873-2984</identifier><identifier>DOI: 10.1016/j.calphad.2007.11.003</identifier><identifier>CODEN: CCCTD6</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Chemical thermodynamics ; Chemistry ; Computer simulation ; Diffusion ; Driving ; Evolution ; Exact sciences and technology ; General and physical chemistry ; General. Theory ; Kinetics ; Mathematical analysis ; Mathematical models ; Microstructure ; Nonequilibrium thermodynamics ; Phase-field modeling ; Simulation ; Thermodynamics</subject><ispartof>Calphad, 2008-06, Vol.32 (2), p.268-294</ispartof><rights>2007 Elsevier Ltd</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-6a4fe3290a4eb478a5dc6eb40ec9a3caf3d28d0d47321c7fb16ae6ed3f24f10e3</citedby><cites>FETCH-LOGICAL-c468t-6a4fe3290a4eb478a5dc6eb40ec9a3caf3d28d0d47321c7fb16ae6ed3f24f10e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.calphad.2007.11.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20439612$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Moelans, Nele</creatorcontrib><creatorcontrib>Blanpain, Bart</creatorcontrib><creatorcontrib>Wollants, Patrick</creatorcontrib><title>An introduction to phase-field modeling of microstructure evolution</title><title>Calphad</title><description>The phase-field method has become an important and extremely versatile technique for simulating microstructure evolution at the mesoscale. Thanks to the diffuse-interface approach, it allows us to study the evolution of arbitrary complex grain morphologies without any presumption on their shape or mutual distribution. It is also straightforward to account for different thermodynamic driving forces for microstructure evolution, such as bulk and interfacial energy, elastic energy and electric or magnetic energy, and the effect of different transport processes, such as mass diffusion, heat conduction and convection. The purpose of the paper is to give an introduction to the phase-field modeling technique. The concept of diffuse interfaces, the phase-field variables, the thermodynamic driving force for microstructure evolution and the kinetic phase-field equations are introduced. Furthermore, common techniques for parameter determination and numerical solution of the equations are discussed. To show the variety in phase-field models, different model formulations are exploited, depending on which is most common or most illustrative.</description><subject>Chemical thermodynamics</subject><subject>Chemistry</subject><subject>Computer simulation</subject><subject>Diffusion</subject><subject>Driving</subject><subject>Evolution</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>General. Theory</subject><subject>Kinetics</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Microstructure</subject><subject>Nonequilibrium thermodynamics</subject><subject>Phase-field modeling</subject><subject>Simulation</subject><subject>Thermodynamics</subject><issn>0364-5916</issn><issn>1873-2984</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-BKEX9dSar6btSZZl_YAFL3oO2WSiWdpmTdoF_70pu3jU0wzM884wD0LXBBcEE3G_LbRqd5_KFBTjqiCkwJidoBmpK5bTpuanaIaZ4HnZEHGOLmLc4gQyxmdouegz1w_Bm1EPzvfZ4LO0KkJuHbQm67yB1vUfmbdZ53TwcQiJHANksPftOGUu0ZlVbYSrY52j98fV2_I5X78-vSwX61xzUQ-5UNwCow1WHDa8qlVptEgdBt0oppVlhtYGG14xSnRlN0QoEGCYpdwSDGyO7g57d8F_jRAH2bmooW1VD36MskkyBC8rnsjbP0nGyqomFCewPIDTZzGAlbvgOhW-JcFykiu38ihXTnIlITLJTbmb4wEV09wG1WsXf8MUc9YIQhP3cOAgedk7CDJqB70G4wLoQRrv_rn0A8_fk1k</recordid><startdate>20080601</startdate><enddate>20080601</enddate><creator>Moelans, Nele</creator><creator>Blanpain, Bart</creator><creator>Wollants, Patrick</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20080601</creationdate><title>An introduction to phase-field modeling of microstructure evolution</title><author>Moelans, Nele ; Blanpain, Bart ; Wollants, Patrick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-6a4fe3290a4eb478a5dc6eb40ec9a3caf3d28d0d47321c7fb16ae6ed3f24f10e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Chemical thermodynamics</topic><topic>Chemistry</topic><topic>Computer simulation</topic><topic>Diffusion</topic><topic>Driving</topic><topic>Evolution</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>General. Theory</topic><topic>Kinetics</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Microstructure</topic><topic>Nonequilibrium thermodynamics</topic><topic>Phase-field modeling</topic><topic>Simulation</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moelans, Nele</creatorcontrib><creatorcontrib>Blanpain, Bart</creatorcontrib><creatorcontrib>Wollants, Patrick</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Calphad</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moelans, Nele</au><au>Blanpain, Bart</au><au>Wollants, Patrick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An introduction to phase-field modeling of microstructure evolution</atitle><jtitle>Calphad</jtitle><date>2008-06-01</date><risdate>2008</risdate><volume>32</volume><issue>2</issue><spage>268</spage><epage>294</epage><pages>268-294</pages><issn>0364-5916</issn><eissn>1873-2984</eissn><coden>CCCTD6</coden><abstract>The phase-field method has become an important and extremely versatile technique for simulating microstructure evolution at the mesoscale. Thanks to the diffuse-interface approach, it allows us to study the evolution of arbitrary complex grain morphologies without any presumption on their shape or mutual distribution. It is also straightforward to account for different thermodynamic driving forces for microstructure evolution, such as bulk and interfacial energy, elastic energy and electric or magnetic energy, and the effect of different transport processes, such as mass diffusion, heat conduction and convection. The purpose of the paper is to give an introduction to the phase-field modeling technique. The concept of diffuse interfaces, the phase-field variables, the thermodynamic driving force for microstructure evolution and the kinetic phase-field equations are introduced. Furthermore, common techniques for parameter determination and numerical solution of the equations are discussed. To show the variety in phase-field models, different model formulations are exploited, depending on which is most common or most illustrative.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.calphad.2007.11.003</doi><tpages>27</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0364-5916 |
ispartof | Calphad, 2008-06, Vol.32 (2), p.268-294 |
issn | 0364-5916 1873-2984 |
language | eng |
recordid | cdi_proquest_miscellaneous_901664574 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings |
subjects | Chemical thermodynamics Chemistry Computer simulation Diffusion Driving Evolution Exact sciences and technology General and physical chemistry General. Theory Kinetics Mathematical analysis Mathematical models Microstructure Nonequilibrium thermodynamics Phase-field modeling Simulation Thermodynamics |
title | An introduction to phase-field modeling of microstructure evolution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A19%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20introduction%20to%20phase-field%20modeling%20of%20microstructure%20evolution&rft.jtitle=Calphad&rft.au=Moelans,%20Nele&rft.date=2008-06-01&rft.volume=32&rft.issue=2&rft.spage=268&rft.epage=294&rft.pages=268-294&rft.issn=0364-5916&rft.eissn=1873-2984&rft.coden=CCCTD6&rft_id=info:doi/10.1016/j.calphad.2007.11.003&rft_dat=%3Cproquest_cross%3E33578120%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=33578120&rft_id=info:pmid/&rft_els_id=S0364591607000880&rfr_iscdi=true |