Crystal growth and p-type conductivity control of AlGaN for high-efficiency nitride-based UV emitters

Microstructural analysis was carried out to clarify the compositional dependence of the generation of dislocations in AlxGa1‐xN on an underlying AlN layer grown by metalorganic vapor phase epitaxy. When the film thickness is less than 1.5 μm, the threading dislocation density (TDD) increases with de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica status solidi. C 2009-12, Vol.6 (12), p.2621-2625
Hauptverfasser: Mori, T., Nagamatsu, K., Nonaka, K., Takeda, K., Iwaya, M., Kamiyama, S., Amano, H., Akasaki, I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2625
container_issue 12
container_start_page 2621
container_title Physica status solidi. C
container_volume 6
creator Mori, T.
Nagamatsu, K.
Nonaka, K.
Takeda, K.
Iwaya, M.
Kamiyama, S.
Amano, H.
Akasaki, I.
description Microstructural analysis was carried out to clarify the compositional dependence of the generation of dislocations in AlxGa1‐xN on an underlying AlN layer grown by metalorganic vapor phase epitaxy. When the film thickness is less than 1.5 μm, the threading dislocation density (TDD) increases with decreasing AlN molar fraction. However, when the film thickness exceeds 1.5 μm, TDD becomes maximum at x around 0.5. The growth of AlGaN on a grooved AlN template is effective in reducing TDD for all AlN molar fractions. TDD in AlGaN, which is close to binaries such as GaN and AlN, is a few 107 cm–2, while for the intermediate composition with x around 0.5, TDD is still at mid 108 cm–2. The activation energy of Mg in AlGaN is found to show a strong Mg concentration dependence with a negative one‐third power law in Al0.25Ga0.75N and Al0.5Ga0.5N as well as in GaN. Overdoping of Mg causes an increase in the activation energy for every composition; from this, the optimum Mg concentration for realizing the highest hole concentration can be deduced. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
doi_str_mv 10.1002/pssc.200982547
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901664013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>901664013</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4577-5c1d6fa36883cd8e6bd66e331eb80b12d9996d643513ba480025356463e1ac43</originalsourceid><addsrcrecordid>eNqFkEFv1DAUhCMEEqVw5ewbJy92bL_Yx7KiC6gqSFvK0XLsl64hmwTb25J_T1aLKm49vXnSfCPNVNVbzlacsfr9lLNf1YwZXSvZPKvOOHBGOcj6-aI11BSE4i-rVzn_ZEwoxuGswnWac3E9uUvjQ9kRNwQy0TJPSPw4hIMv8T6W-fiUNPZk7MhFv3HXpBsT2cW7HcWuiz7i4GcyxJJiQNq6jIF8vyW4j6Vgyq-rF53rM775d8-rm8uPN-tP9Orr5vP64op6qZqGKs8DdE6A1sIHjdAGABSCY6tZy-tgjIEAcqkhWif10loJBRIEcuelOK_enWKnNP4-YC52H7PHvncDjodszVIZJOPiSac2wI3S-pi5Ojl9GnNO2Nkpxb1Ls-XMHne3x93t4-4LYE7AQ-xxfsJtv2236_9ZemJjLvjnkXXpl4VGNMr-uN5YycSHS7O9tV_EX861lm0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>896195884</pqid></control><display><type>article</type><title>Crystal growth and p-type conductivity control of AlGaN for high-efficiency nitride-based UV emitters</title><source>Wiley Online Library All Journals</source><creator>Mori, T. ; Nagamatsu, K. ; Nonaka, K. ; Takeda, K. ; Iwaya, M. ; Kamiyama, S. ; Amano, H. ; Akasaki, I.</creator><creatorcontrib>Mori, T. ; Nagamatsu, K. ; Nonaka, K. ; Takeda, K. ; Iwaya, M. ; Kamiyama, S. ; Amano, H. ; Akasaki, I.</creatorcontrib><description>Microstructural analysis was carried out to clarify the compositional dependence of the generation of dislocations in AlxGa1‐xN on an underlying AlN layer grown by metalorganic vapor phase epitaxy. When the film thickness is less than 1.5 μm, the threading dislocation density (TDD) increases with decreasing AlN molar fraction. However, when the film thickness exceeds 1.5 μm, TDD becomes maximum at x around 0.5. The growth of AlGaN on a grooved AlN template is effective in reducing TDD for all AlN molar fractions. TDD in AlGaN, which is close to binaries such as GaN and AlN, is a few 107 cm–2, while for the intermediate composition with x around 0.5, TDD is still at mid 108 cm–2. The activation energy of Mg in AlGaN is found to show a strong Mg concentration dependence with a negative one‐third power law in Al0.25Ga0.75N and Al0.5Ga0.5N as well as in GaN. Overdoping of Mg causes an increase in the activation energy for every composition; from this, the optimum Mg concentration for realizing the highest hole concentration can be deduced. (© 2009 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</description><identifier>ISSN: 1862-6351</identifier><identifier>ISSN: 1610-1642</identifier><identifier>EISSN: 1610-1642</identifier><identifier>DOI: 10.1002/pssc.200982547</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><subject>61.72.Lk ; 61.72.uj ; 68.37.Lp ; 68.55.Ln ; 71.55.Eq ; 72.80.Ey ; Activation energy ; Aluminum gallium nitrides ; Aluminum nitride ; Concentration (composition) ; Density ; Film thickness ; Gallium nitrides ; Magnesium</subject><ispartof>Physica status solidi. C, 2009-12, Vol.6 (12), p.2621-2625</ispartof><rights>Copyright © 2009 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4577-5c1d6fa36883cd8e6bd66e331eb80b12d9996d643513ba480025356463e1ac43</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssc.200982547$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssc.200982547$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Mori, T.</creatorcontrib><creatorcontrib>Nagamatsu, K.</creatorcontrib><creatorcontrib>Nonaka, K.</creatorcontrib><creatorcontrib>Takeda, K.</creatorcontrib><creatorcontrib>Iwaya, M.</creatorcontrib><creatorcontrib>Kamiyama, S.</creatorcontrib><creatorcontrib>Amano, H.</creatorcontrib><creatorcontrib>Akasaki, I.</creatorcontrib><title>Crystal growth and p-type conductivity control of AlGaN for high-efficiency nitride-based UV emitters</title><title>Physica status solidi. C</title><addtitle>Phys. Status Solidi (c)</addtitle><description>Microstructural analysis was carried out to clarify the compositional dependence of the generation of dislocations in AlxGa1‐xN on an underlying AlN layer grown by metalorganic vapor phase epitaxy. When the film thickness is less than 1.5 μm, the threading dislocation density (TDD) increases with decreasing AlN molar fraction. However, when the film thickness exceeds 1.5 μm, TDD becomes maximum at x around 0.5. The growth of AlGaN on a grooved AlN template is effective in reducing TDD for all AlN molar fractions. TDD in AlGaN, which is close to binaries such as GaN and AlN, is a few 107 cm–2, while for the intermediate composition with x around 0.5, TDD is still at mid 108 cm–2. The activation energy of Mg in AlGaN is found to show a strong Mg concentration dependence with a negative one‐third power law in Al0.25Ga0.75N and Al0.5Ga0.5N as well as in GaN. Overdoping of Mg causes an increase in the activation energy for every composition; from this, the optimum Mg concentration for realizing the highest hole concentration can be deduced. (© 2009 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</description><subject>61.72.Lk</subject><subject>61.72.uj</subject><subject>68.37.Lp</subject><subject>68.55.Ln</subject><subject>71.55.Eq</subject><subject>72.80.Ey</subject><subject>Activation energy</subject><subject>Aluminum gallium nitrides</subject><subject>Aluminum nitride</subject><subject>Concentration (composition)</subject><subject>Density</subject><subject>Film thickness</subject><subject>Gallium nitrides</subject><subject>Magnesium</subject><issn>1862-6351</issn><issn>1610-1642</issn><issn>1610-1642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkEFv1DAUhCMEEqVw5ewbJy92bL_Yx7KiC6gqSFvK0XLsl64hmwTb25J_T1aLKm49vXnSfCPNVNVbzlacsfr9lLNf1YwZXSvZPKvOOHBGOcj6-aI11BSE4i-rVzn_ZEwoxuGswnWac3E9uUvjQ9kRNwQy0TJPSPw4hIMv8T6W-fiUNPZk7MhFv3HXpBsT2cW7HcWuiz7i4GcyxJJiQNq6jIF8vyW4j6Vgyq-rF53rM775d8-rm8uPN-tP9Orr5vP64op6qZqGKs8DdE6A1sIHjdAGABSCY6tZy-tgjIEAcqkhWif10loJBRIEcuelOK_enWKnNP4-YC52H7PHvncDjodszVIZJOPiSac2wI3S-pi5Ojl9GnNO2Nkpxb1Ls-XMHne3x93t4-4LYE7AQ-xxfsJtv2236_9ZemJjLvjnkXXpl4VGNMr-uN5YycSHS7O9tV_EX861lm0</recordid><startdate>200912</startdate><enddate>200912</enddate><creator>Mori, T.</creator><creator>Nagamatsu, K.</creator><creator>Nonaka, K.</creator><creator>Takeda, K.</creator><creator>Iwaya, M.</creator><creator>Kamiyama, S.</creator><creator>Amano, H.</creator><creator>Akasaki, I.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QQ</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>200912</creationdate><title>Crystal growth and p-type conductivity control of AlGaN for high-efficiency nitride-based UV emitters</title><author>Mori, T. ; Nagamatsu, K. ; Nonaka, K. ; Takeda, K. ; Iwaya, M. ; Kamiyama, S. ; Amano, H. ; Akasaki, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4577-5c1d6fa36883cd8e6bd66e331eb80b12d9996d643513ba480025356463e1ac43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>61.72.Lk</topic><topic>61.72.uj</topic><topic>68.37.Lp</topic><topic>68.55.Ln</topic><topic>71.55.Eq</topic><topic>72.80.Ey</topic><topic>Activation energy</topic><topic>Aluminum gallium nitrides</topic><topic>Aluminum nitride</topic><topic>Concentration (composition)</topic><topic>Density</topic><topic>Film thickness</topic><topic>Gallium nitrides</topic><topic>Magnesium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mori, T.</creatorcontrib><creatorcontrib>Nagamatsu, K.</creatorcontrib><creatorcontrib>Nonaka, K.</creatorcontrib><creatorcontrib>Takeda, K.</creatorcontrib><creatorcontrib>Iwaya, M.</creatorcontrib><creatorcontrib>Kamiyama, S.</creatorcontrib><creatorcontrib>Amano, H.</creatorcontrib><creatorcontrib>Akasaki, I.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mori, T.</au><au>Nagamatsu, K.</au><au>Nonaka, K.</au><au>Takeda, K.</au><au>Iwaya, M.</au><au>Kamiyama, S.</au><au>Amano, H.</au><au>Akasaki, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystal growth and p-type conductivity control of AlGaN for high-efficiency nitride-based UV emitters</atitle><jtitle>Physica status solidi. C</jtitle><addtitle>Phys. Status Solidi (c)</addtitle><date>2009-12</date><risdate>2009</risdate><volume>6</volume><issue>12</issue><spage>2621</spage><epage>2625</epage><pages>2621-2625</pages><issn>1862-6351</issn><issn>1610-1642</issn><eissn>1610-1642</eissn><abstract>Microstructural analysis was carried out to clarify the compositional dependence of the generation of dislocations in AlxGa1‐xN on an underlying AlN layer grown by metalorganic vapor phase epitaxy. When the film thickness is less than 1.5 μm, the threading dislocation density (TDD) increases with decreasing AlN molar fraction. However, when the film thickness exceeds 1.5 μm, TDD becomes maximum at x around 0.5. The growth of AlGaN on a grooved AlN template is effective in reducing TDD for all AlN molar fractions. TDD in AlGaN, which is close to binaries such as GaN and AlN, is a few 107 cm–2, while for the intermediate composition with x around 0.5, TDD is still at mid 108 cm–2. The activation energy of Mg in AlGaN is found to show a strong Mg concentration dependence with a negative one‐third power law in Al0.25Ga0.75N and Al0.5Ga0.5N as well as in GaN. Overdoping of Mg causes an increase in the activation energy for every composition; from this, the optimum Mg concentration for realizing the highest hole concentration can be deduced. (© 2009 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/pssc.200982547</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1862-6351
ispartof Physica status solidi. C, 2009-12, Vol.6 (12), p.2621-2625
issn 1862-6351
1610-1642
1610-1642
language eng
recordid cdi_proquest_miscellaneous_901664013
source Wiley Online Library All Journals
subjects 61.72.Lk
61.72.uj
68.37.Lp
68.55.Ln
71.55.Eq
72.80.Ey
Activation energy
Aluminum gallium nitrides
Aluminum nitride
Concentration (composition)
Density
Film thickness
Gallium nitrides
Magnesium
title Crystal growth and p-type conductivity control of AlGaN for high-efficiency nitride-based UV emitters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T17%3A05%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystal%20growth%20and%20p-type%20conductivity%20control%20of%20AlGaN%20for%20high-efficiency%20nitride-based%20UV%20emitters&rft.jtitle=Physica%20status%20solidi.%20C&rft.au=Mori,%20T.&rft.date=2009-12&rft.volume=6&rft.issue=12&rft.spage=2621&rft.epage=2625&rft.pages=2621-2625&rft.issn=1862-6351&rft.eissn=1610-1642&rft_id=info:doi/10.1002/pssc.200982547&rft_dat=%3Cproquest_cross%3E901664013%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=896195884&rft_id=info:pmid/&rfr_iscdi=true