suspension of spheres in a dilute polymer solution

The Hookean dumbbell model of a macromolecule predicts non-uniform density and pressure fields surrounding a sphere buoyant in a dilute polymer solution when the size of the sphere is of the same order of magnitude as the size of the macromolecules. Using this prediction, the root mean square separa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2009-12, Vol.114 (5), p.2992-2996
1. Verfasser: Grisafi, S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2996
container_issue 5
container_start_page 2992
container_title Journal of applied polymer science
container_volume 114
creator Grisafi, S
description The Hookean dumbbell model of a macromolecule predicts non-uniform density and pressure fields surrounding a sphere buoyant in a dilute polymer solution when the size of the sphere is of the same order of magnitude as the size of the macromolecules. Using this prediction, the root mean square separation distance of a suspension of spheres buoyant within a dilute polymer solution is found to be inversely proportional to both the square of the radius of a sphere and the density of the polymer solution. The phase space distribution function for an ensemble of spheres immersed at equilibrium within a dilute polymer solution is found and used to define the magnitude of the ensemble average peculiar acceleration of the spheres. The peculiar acceleration results from changes in direction of the peculiar velocity. It is found to be directly proportional to the temperature, polymer density, and square of the radius of a sphere and inversely proportional to the mass of a sphere. The self- diffusivity of the particles varies directly with the square root of the temperature.
doi_str_mv 10.1002/app.30920
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901663352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>901663352</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3850-acd0c0069ec79319934200744f6e69806ab77c888730d9b7d783e6222c2dec2e3</originalsourceid><addsrcrecordid>eNqFkE1P3DAQhi1EJRbKgV9ALghxCIztxB9HWNFtVbRFWhBHyzgTCGST4NkV3X9f01BuqHOxRn7eR6OXsQMOpxxAnPlhOJVgBWyxCQer80IJs80m6Y_nxtpyh-0SPQFwXoKaMEFrGrCjpu-yvs5oeMSIlDVd5rOqadcrzIa-3SwxZtSnNXFf2Zfat4T77-8eu_12eTP9nl_9mv2Ynl_lQZoSch8qCADKYtBWcmtlIQB0UdQKlTWg_L3WwRijJVT2XlfaSFRCiCAqDALlHjsevUPsX9ZIK7dsKGDb-g77NTkLXCkpS_Ff0lglpCoNJPJkJEPsiSLWbojN0seN4-DeCnSpQPe3wMQevVs9Bd_W0XehoY-AEKCAg0zc2ci9Ni1uPhe68-vrf-Z8TDS0wt8fCR-fndJSl-5uPnMXs8XPYj5buHniD0e-9r3zDzFdcbsQwGVqwAiZ5g_v7ZUI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>896236580</pqid></control><display><type>article</type><title>suspension of spheres in a dilute polymer solution</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Grisafi, S</creator><creatorcontrib>Grisafi, S</creatorcontrib><description>The Hookean dumbbell model of a macromolecule predicts non-uniform density and pressure fields surrounding a sphere buoyant in a dilute polymer solution when the size of the sphere is of the same order of magnitude as the size of the macromolecules. Using this prediction, the root mean square separation distance of a suspension of spheres buoyant within a dilute polymer solution is found to be inversely proportional to both the square of the radius of a sphere and the density of the polymer solution. The phase space distribution function for an ensemble of spheres immersed at equilibrium within a dilute polymer solution is found and used to define the magnitude of the ensemble average peculiar acceleration of the spheres. The peculiar acceleration results from changes in direction of the peculiar velocity. It is found to be directly proportional to the temperature, polymer density, and square of the radius of a sphere and inversely proportional to the mass of a sphere. The self- diffusivity of the particles varies directly with the square root of the temperature.</description><identifier>ISSN: 0021-8995</identifier><identifier>ISSN: 1097-4628</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.30920</identifier><identifier>CODEN: JAPNAB</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Acceleration ; adsorption ; Applied sciences ; Buoyancy ; colloids ; Density ; diffusion ; Diffusivity ; Dilution ; Exact sciences and technology ; interfaces ; Macromolecules ; Mathematical models ; molecular mechanics ; Organic polymers ; Physicochemistry of polymers ; Properties and characterization ; Roots ; Solution and gel properties</subject><ispartof>Journal of applied polymer science, 2009-12, Vol.114 (5), p.2992-2996</ispartof><rights>Copyright © 2009 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3850-acd0c0069ec79319934200744f6e69806ab77c888730d9b7d783e6222c2dec2e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fapp.30920$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fapp.30920$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22060103$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Grisafi, S</creatorcontrib><title>suspension of spheres in a dilute polymer solution</title><title>Journal of applied polymer science</title><addtitle>J. Appl. Polym. Sci</addtitle><description>The Hookean dumbbell model of a macromolecule predicts non-uniform density and pressure fields surrounding a sphere buoyant in a dilute polymer solution when the size of the sphere is of the same order of magnitude as the size of the macromolecules. Using this prediction, the root mean square separation distance of a suspension of spheres buoyant within a dilute polymer solution is found to be inversely proportional to both the square of the radius of a sphere and the density of the polymer solution. The phase space distribution function for an ensemble of spheres immersed at equilibrium within a dilute polymer solution is found and used to define the magnitude of the ensemble average peculiar acceleration of the spheres. The peculiar acceleration results from changes in direction of the peculiar velocity. It is found to be directly proportional to the temperature, polymer density, and square of the radius of a sphere and inversely proportional to the mass of a sphere. The self- diffusivity of the particles varies directly with the square root of the temperature.</description><subject>Acceleration</subject><subject>adsorption</subject><subject>Applied sciences</subject><subject>Buoyancy</subject><subject>colloids</subject><subject>Density</subject><subject>diffusion</subject><subject>Diffusivity</subject><subject>Dilution</subject><subject>Exact sciences and technology</subject><subject>interfaces</subject><subject>Macromolecules</subject><subject>Mathematical models</subject><subject>molecular mechanics</subject><subject>Organic polymers</subject><subject>Physicochemistry of polymers</subject><subject>Properties and characterization</subject><subject>Roots</subject><subject>Solution and gel properties</subject><issn>0021-8995</issn><issn>1097-4628</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkE1P3DAQhi1EJRbKgV9ALghxCIztxB9HWNFtVbRFWhBHyzgTCGST4NkV3X9f01BuqHOxRn7eR6OXsQMOpxxAnPlhOJVgBWyxCQer80IJs80m6Y_nxtpyh-0SPQFwXoKaMEFrGrCjpu-yvs5oeMSIlDVd5rOqadcrzIa-3SwxZtSnNXFf2Zfat4T77-8eu_12eTP9nl_9mv2Ynl_lQZoSch8qCADKYtBWcmtlIQB0UdQKlTWg_L3WwRijJVT2XlfaSFRCiCAqDALlHjsevUPsX9ZIK7dsKGDb-g77NTkLXCkpS_Ff0lglpCoNJPJkJEPsiSLWbojN0seN4-DeCnSpQPe3wMQevVs9Bd_W0XehoY-AEKCAg0zc2ci9Ni1uPhe68-vrf-Z8TDS0wt8fCR-fndJSl-5uPnMXs8XPYj5buHniD0e-9r3zDzFdcbsQwGVqwAiZ5g_v7ZUI</recordid><startdate>20091201</startdate><enddate>20091201</enddate><creator>Grisafi, S</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20091201</creationdate><title>suspension of spheres in a dilute polymer solution</title><author>Grisafi, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3850-acd0c0069ec79319934200744f6e69806ab77c888730d9b7d783e6222c2dec2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Acceleration</topic><topic>adsorption</topic><topic>Applied sciences</topic><topic>Buoyancy</topic><topic>colloids</topic><topic>Density</topic><topic>diffusion</topic><topic>Diffusivity</topic><topic>Dilution</topic><topic>Exact sciences and technology</topic><topic>interfaces</topic><topic>Macromolecules</topic><topic>Mathematical models</topic><topic>molecular mechanics</topic><topic>Organic polymers</topic><topic>Physicochemistry of polymers</topic><topic>Properties and characterization</topic><topic>Roots</topic><topic>Solution and gel properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grisafi, S</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grisafi, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>suspension of spheres in a dilute polymer solution</atitle><jtitle>Journal of applied polymer science</jtitle><addtitle>J. Appl. Polym. Sci</addtitle><date>2009-12-01</date><risdate>2009</risdate><volume>114</volume><issue>5</issue><spage>2992</spage><epage>2996</epage><pages>2992-2996</pages><issn>0021-8995</issn><issn>1097-4628</issn><eissn>1097-4628</eissn><coden>JAPNAB</coden><abstract>The Hookean dumbbell model of a macromolecule predicts non-uniform density and pressure fields surrounding a sphere buoyant in a dilute polymer solution when the size of the sphere is of the same order of magnitude as the size of the macromolecules. Using this prediction, the root mean square separation distance of a suspension of spheres buoyant within a dilute polymer solution is found to be inversely proportional to both the square of the radius of a sphere and the density of the polymer solution. The phase space distribution function for an ensemble of spheres immersed at equilibrium within a dilute polymer solution is found and used to define the magnitude of the ensemble average peculiar acceleration of the spheres. The peculiar acceleration results from changes in direction of the peculiar velocity. It is found to be directly proportional to the temperature, polymer density, and square of the radius of a sphere and inversely proportional to the mass of a sphere. The self- diffusivity of the particles varies directly with the square root of the temperature.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/app.30920</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8995
ispartof Journal of applied polymer science, 2009-12, Vol.114 (5), p.2992-2996
issn 0021-8995
1097-4628
1097-4628
language eng
recordid cdi_proquest_miscellaneous_901663352
source Wiley Online Library Journals Frontfile Complete
subjects Acceleration
adsorption
Applied sciences
Buoyancy
colloids
Density
diffusion
Diffusivity
Dilution
Exact sciences and technology
interfaces
Macromolecules
Mathematical models
molecular mechanics
Organic polymers
Physicochemistry of polymers
Properties and characterization
Roots
Solution and gel properties
title suspension of spheres in a dilute polymer solution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A13%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=suspension%20of%20spheres%20in%20a%20dilute%20polymer%20solution&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Grisafi,%20S&rft.date=2009-12-01&rft.volume=114&rft.issue=5&rft.spage=2992&rft.epage=2996&rft.pages=2992-2996&rft.issn=0021-8995&rft.eissn=1097-4628&rft.coden=JAPNAB&rft_id=info:doi/10.1002/app.30920&rft_dat=%3Cproquest_cross%3E901663352%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=896236580&rft_id=info:pmid/&rfr_iscdi=true