Surgery and bordism groups in quantum partial differential equations. I: The quantum Poincaré conjecture

In this work, in two parts, we continue to develop the geometric theory of quantum PDE’s, introduced by us starting from 1996. (The second part is quoted in Prástaro [A. Prástaro, Surgery and bordism groups in quantum partial differential equations. II: Variational quantum PDE’s, Nonlinear Anal. TMA...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2009-12, Vol.71 (12), p.e502-e525
1. Verfasser: Prastaro, Agostino
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e525
container_issue 12
container_start_page e502
container_title Nonlinear analysis
container_volume 71
creator Prastaro, Agostino
description In this work, in two parts, we continue to develop the geometric theory of quantum PDE’s, introduced by us starting from 1996. (The second part is quoted in Prástaro [A. Prástaro, Surgery and bordism groups in quantum partial differential equations. II: Variational quantum PDE’s, Nonlinear Anal. TMA, in press ( 10.1016/j.na.2008.10.063)]) This theory has the purpose to build a rigorous mathematical theory of PDE’s in the category D S of noncommutative manifolds ( quantum (super)manifolds), necessary to encode physical phenomena at microscopic level (i.e.,  quantum level). Aim of the present paper is to report on some new issues in this direction, emphasizing an interplaying between surgery, integral bordism groups and conservations laws. In particular, a proof of the Poincaré conjecture, generalized to the category D S , is given by using our geometric theory of PDE’s just in such a category.
doi_str_mv 10.1016/j.na.2008.11.077
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901663133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X08006986</els_id><sourcerecordid>901663133</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-38a7af3e556ffbc68e172d91b6fdf7c128edd457c7e512cb6bee58b787a945493</originalsourceid><addsrcrecordid>eNp1kM1KAzEURoMoWKt7l9m5mjGZNMm0OxF_CgUFK7gLmeSmprRJm8wIfSSfwxdzasWdq8vlnu_CdxC6pKSkhIrrZRl0WRFSl5SWRMojNKC1ZAWvKD9GA8JEVfCReDtFZzkvCSFUMjFA_qVLC0g7rIPFTUzW5zVepNhtMvYBbzsd2m6NNzq1Xq-w9c5BgvCzQH9tfQy5xNMJnr_DH_4cfTA6fX1iE8MSTNslOEcnTq8yXPzOIXq9v5vfPhazp4fp7c2sMKwSbcFqLbVjwLlwrjGiBiorO6aNcNZJQ6sarB1xaSRwWplGNAC8bmQt9XjER2M2RFeHv5sUtx3kVq19NrBa6QCxy2rc2xKMMtaT5ECaFHNO4NQm-bVOO0WJ2ktVSxW02ktVlKpeah-ZHCLQN_jwkFQ2HoIB61NfU9no_w9_A4vsgY8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901663133</pqid></control><display><type>article</type><title>Surgery and bordism groups in quantum partial differential equations. I: The quantum Poincaré conjecture</title><source>Elsevier ScienceDirect Journals</source><creator>Prastaro, Agostino</creator><creatorcontrib>Prastaro, Agostino</creatorcontrib><description>In this work, in two parts, we continue to develop the geometric theory of quantum PDE’s, introduced by us starting from 1996. (The second part is quoted in Prástaro [A. Prástaro, Surgery and bordism groups in quantum partial differential equations. II: Variational quantum PDE’s, Nonlinear Anal. TMA, in press ( 10.1016/j.na.2008.10.063)]) This theory has the purpose to build a rigorous mathematical theory of PDE’s in the category D S of noncommutative manifolds ( quantum (super)manifolds), necessary to encode physical phenomena at microscopic level (i.e.,  quantum level). Aim of the present paper is to report on some new issues in this direction, emphasizing an interplaying between surgery, integral bordism groups and conservations laws. In particular, a proof of the Poincaré conjecture, generalized to the category D S , is given by using our geometric theory of PDE’s just in such a category.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2008.11.077</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Categories ; Conservation laws ; Construction ; Existence of local and global solutions in noncommutative PDE’s ; Integral bordisms in PDE’s ; Mathematical analysis ; Nonlinearity ; Partial differential equations ; Poincaré conjecture ; Presses ; Surgery</subject><ispartof>Nonlinear analysis, 2009-12, Vol.71 (12), p.e502-e525</ispartof><rights>2008 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-38a7af3e556ffbc68e172d91b6fdf7c128edd457c7e512cb6bee58b787a945493</citedby><cites>FETCH-LOGICAL-c326t-38a7af3e556ffbc68e172d91b6fdf7c128edd457c7e512cb6bee58b787a945493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0362546X08006986$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Prastaro, Agostino</creatorcontrib><title>Surgery and bordism groups in quantum partial differential equations. I: The quantum Poincaré conjecture</title><title>Nonlinear analysis</title><description>In this work, in two parts, we continue to develop the geometric theory of quantum PDE’s, introduced by us starting from 1996. (The second part is quoted in Prástaro [A. Prástaro, Surgery and bordism groups in quantum partial differential equations. II: Variational quantum PDE’s, Nonlinear Anal. TMA, in press ( 10.1016/j.na.2008.10.063)]) This theory has the purpose to build a rigorous mathematical theory of PDE’s in the category D S of noncommutative manifolds ( quantum (super)manifolds), necessary to encode physical phenomena at microscopic level (i.e.,  quantum level). Aim of the present paper is to report on some new issues in this direction, emphasizing an interplaying between surgery, integral bordism groups and conservations laws. In particular, a proof of the Poincaré conjecture, generalized to the category D S , is given by using our geometric theory of PDE’s just in such a category.</description><subject>Categories</subject><subject>Conservation laws</subject><subject>Construction</subject><subject>Existence of local and global solutions in noncommutative PDE’s</subject><subject>Integral bordisms in PDE’s</subject><subject>Mathematical analysis</subject><subject>Nonlinearity</subject><subject>Partial differential equations</subject><subject>Poincaré conjecture</subject><subject>Presses</subject><subject>Surgery</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEURoMoWKt7l9m5mjGZNMm0OxF_CgUFK7gLmeSmprRJm8wIfSSfwxdzasWdq8vlnu_CdxC6pKSkhIrrZRl0WRFSl5SWRMojNKC1ZAWvKD9GA8JEVfCReDtFZzkvCSFUMjFA_qVLC0g7rIPFTUzW5zVepNhtMvYBbzsd2m6NNzq1Xq-w9c5BgvCzQH9tfQy5xNMJnr_DH_4cfTA6fX1iE8MSTNslOEcnTq8yXPzOIXq9v5vfPhazp4fp7c2sMKwSbcFqLbVjwLlwrjGiBiorO6aNcNZJQ6sarB1xaSRwWplGNAC8bmQt9XjER2M2RFeHv5sUtx3kVq19NrBa6QCxy2rc2xKMMtaT5ECaFHNO4NQm-bVOO0WJ2ktVSxW02ktVlKpeah-ZHCLQN_jwkFQ2HoIB61NfU9no_w9_A4vsgY8</recordid><startdate>20091215</startdate><enddate>20091215</enddate><creator>Prastaro, Agostino</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20091215</creationdate><title>Surgery and bordism groups in quantum partial differential equations. I: The quantum Poincaré conjecture</title><author>Prastaro, Agostino</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-38a7af3e556ffbc68e172d91b6fdf7c128edd457c7e512cb6bee58b787a945493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Categories</topic><topic>Conservation laws</topic><topic>Construction</topic><topic>Existence of local and global solutions in noncommutative PDE’s</topic><topic>Integral bordisms in PDE’s</topic><topic>Mathematical analysis</topic><topic>Nonlinearity</topic><topic>Partial differential equations</topic><topic>Poincaré conjecture</topic><topic>Presses</topic><topic>Surgery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prastaro, Agostino</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prastaro, Agostino</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surgery and bordism groups in quantum partial differential equations. I: The quantum Poincaré conjecture</atitle><jtitle>Nonlinear analysis</jtitle><date>2009-12-15</date><risdate>2009</risdate><volume>71</volume><issue>12</issue><spage>e502</spage><epage>e525</epage><pages>e502-e525</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><abstract>In this work, in two parts, we continue to develop the geometric theory of quantum PDE’s, introduced by us starting from 1996. (The second part is quoted in Prástaro [A. Prástaro, Surgery and bordism groups in quantum partial differential equations. II: Variational quantum PDE’s, Nonlinear Anal. TMA, in press ( 10.1016/j.na.2008.10.063)]) This theory has the purpose to build a rigorous mathematical theory of PDE’s in the category D S of noncommutative manifolds ( quantum (super)manifolds), necessary to encode physical phenomena at microscopic level (i.e.,  quantum level). Aim of the present paper is to report on some new issues in this direction, emphasizing an interplaying between surgery, integral bordism groups and conservations laws. In particular, a proof of the Poincaré conjecture, generalized to the category D S , is given by using our geometric theory of PDE’s just in such a category.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2008.11.077</doi></addata></record>
fulltext fulltext
identifier ISSN: 0362-546X
ispartof Nonlinear analysis, 2009-12, Vol.71 (12), p.e502-e525
issn 0362-546X
1873-5215
language eng
recordid cdi_proquest_miscellaneous_901663133
source Elsevier ScienceDirect Journals
subjects Categories
Conservation laws
Construction
Existence of local and global solutions in noncommutative PDE’s
Integral bordisms in PDE’s
Mathematical analysis
Nonlinearity
Partial differential equations
Poincaré conjecture
Presses
Surgery
title Surgery and bordism groups in quantum partial differential equations. I: The quantum Poincaré conjecture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T02%3A05%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surgery%20and%20bordism%20groups%20in%20quantum%20partial%20differential%20equations.%20I:%20The%20quantum%20Poincar%C3%A9%20conjecture&rft.jtitle=Nonlinear%20analysis&rft.au=Prastaro,%20Agostino&rft.date=2009-12-15&rft.volume=71&rft.issue=12&rft.spage=e502&rft.epage=e525&rft.pages=e502-e525&rft.issn=0362-546X&rft.eissn=1873-5215&rft_id=info:doi/10.1016/j.na.2008.11.077&rft_dat=%3Cproquest_cross%3E901663133%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=901663133&rft_id=info:pmid/&rft_els_id=S0362546X08006986&rfr_iscdi=true