Polymeric hydrogels and supercritical fluids: The mechanism of hydrogel foaming

A novel method, the hydrogel foaming, is used in this work for the production of porous, polymer-based materials by processing with supercritical carbon dioxide (CO 2). This method is applied to crystalline hydrophilic polymers that, practically, exhibit no phase transition (melting or glass transit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer (Guilford) 2011-06, Vol.52 (13), p.2819-2826
Hauptverfasser: Tsioptsias, C., Paraskevopoulos, M.K., Christofilos, D., Andrieux, P., Panayiotou, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2826
container_issue 13
container_start_page 2819
container_title Polymer (Guilford)
container_volume 52
creator Tsioptsias, C.
Paraskevopoulos, M.K.
Christofilos, D.
Andrieux, P.
Panayiotou, C.
description A novel method, the hydrogel foaming, is used in this work for the production of porous, polymer-based materials by processing with supercritical carbon dioxide (CO 2). This method is applied to crystalline hydrophilic polymers that, practically, exhibit no phase transition (melting or glass transition) below thermal decomposition temperature and, due to their crystallinity, do not absorb CO 2. Such polymers are mainly natural (semi)-crystalline polymers (e.g. chitosan, cellulose, etc.) for which the classical polymer foaming method with supercritical carbon dioxide is not applicable. The hydrogel foaming process (similar to classical polymer foaming) is applied to gelatin, chitosan, and gelatin/chitosan blend hydrogels that are physically crosslinked and may also be chemically crosslinked with glutaraldehyde vapour. After the foaming process, water is removed from the gels by mild freeze-drying leading to porous materials. Pore size control can be achieved by controlling different process parameters. Gelatin exhibits solubility in water up to high concentrations and forms thermoreversible hydrogels, rendering it a suitable choice for the investigation of the process mechanism. The mechanism of hydrogel foaming is explored on the basis of X-ray diffraction, calorimetry, rheology, sorption, Raman spectroscopy measurements and theoretical calculations with the NRHB (Non Random Hydrogen Bonding) equation-of-state model. The sorption and Raman spectroscopy measurements suggest that, besides dissolution in water (of the hydrogel), extensive CO 2 sorption by the polymer also occurs. Based on these results, a critical discussion is made and a mechanism for the hydrogel foaming is proposed. [Display omitted]
doi_str_mv 10.1016/j.polymer.2011.04.043
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901660701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S003238611100348X</els_id><sourcerecordid>901660701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-59ee81a84ea72ea4c83387a10ddab1f0d07c03243ff3cd729718bf5d0b36215a3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWD9-grgX8bR1kux2d72IiF8gKKjnME0mbcrupiat0H9v6havwsBcnved4WHsjMOYA59cLcZL3246CmMBnI-hSCP32IjXlcyFaPg-GwFIkct6wg_ZUYwLABClKEbs9W2IOp3NNyb4GbUxw95kcb2koINbOY1tZtu1M_E6-5hT1pGeY-9il3n7F8qsx871sxN2YLGNdLrbx-zz4f7j7il_eX18vrt9yXUhxSovG6KaY10QVoKw0LWUdYUcjMEpt2Cg0unjQlortalEU_F6aksDUzkRvER5zC6H3mXwX2uKK9W5qKltsSe_jqpJYiZQAU9kOZA6-BgDWbUMrsOwURzU1p9aqJ0_tfWnoEgjU-5idwFjUmAD9trFv7AoRCUb2HLnA2fRK5yFxHy-p6IyOW4a_kvcDERyS98u3YnaUa_JuEB6pYx3__zyA_WLksg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901660701</pqid></control><display><type>article</type><title>Polymeric hydrogels and supercritical fluids: The mechanism of hydrogel foaming</title><source>Elsevier ScienceDirect Journals Collection</source><creator>Tsioptsias, C. ; Paraskevopoulos, M.K. ; Christofilos, D. ; Andrieux, P. ; Panayiotou, C.</creator><creatorcontrib>Tsioptsias, C. ; Paraskevopoulos, M.K. ; Christofilos, D. ; Andrieux, P. ; Panayiotou, C.</creatorcontrib><description>A novel method, the hydrogel foaming, is used in this work for the production of porous, polymer-based materials by processing with supercritical carbon dioxide (CO 2). This method is applied to crystalline hydrophilic polymers that, practically, exhibit no phase transition (melting or glass transition) below thermal decomposition temperature and, due to their crystallinity, do not absorb CO 2. Such polymers are mainly natural (semi)-crystalline polymers (e.g. chitosan, cellulose, etc.) for which the classical polymer foaming method with supercritical carbon dioxide is not applicable. The hydrogel foaming process (similar to classical polymer foaming) is applied to gelatin, chitosan, and gelatin/chitosan blend hydrogels that are physically crosslinked and may also be chemically crosslinked with glutaraldehyde vapour. After the foaming process, water is removed from the gels by mild freeze-drying leading to porous materials. Pore size control can be achieved by controlling different process parameters. Gelatin exhibits solubility in water up to high concentrations and forms thermoreversible hydrogels, rendering it a suitable choice for the investigation of the process mechanism. The mechanism of hydrogel foaming is explored on the basis of X-ray diffraction, calorimetry, rheology, sorption, Raman spectroscopy measurements and theoretical calculations with the NRHB (Non Random Hydrogen Bonding) equation-of-state model. The sorption and Raman spectroscopy measurements suggest that, besides dissolution in water (of the hydrogel), extensive CO 2 sorption by the polymer also occurs. Based on these results, a critical discussion is made and a mechanism for the hydrogel foaming is proposed. [Display omitted]</description><identifier>ISSN: 0032-3861</identifier><identifier>EISSN: 1873-2291</identifier><identifier>DOI: 10.1016/j.polymer.2011.04.043</identifier><identifier>CODEN: POLMAG</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; calorimetry ; Carbon dioxide ; cellulose ; Chitosan ; Crosslinking ; crystal structure ; Exact sciences and technology ; Foaming ; freeze drying ; Gel ; gelatin ; Gelatins ; glass transition ; glutaraldehyde ; hydrocolloids ; Hydrogels ; hydrogen bonding ; hydrophilic polymers ; Mathematical models ; melting ; Natural polymers ; new methods ; Physicochemistry of polymers ; Proteins ; Raman spectroscopy ; rheology ; Sorption ; Starch and polysaccharides ; Supercritical fluids ; temperature ; thermal degradation ; vapors ; water solubility ; X-ray diffraction</subject><ispartof>Polymer (Guilford), 2011-06, Vol.52 (13), p.2819-2826</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-59ee81a84ea72ea4c83387a10ddab1f0d07c03243ff3cd729718bf5d0b36215a3</citedby><cites>FETCH-LOGICAL-c432t-59ee81a84ea72ea4c83387a10ddab1f0d07c03243ff3cd729718bf5d0b36215a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S003238611100348X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24273903$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tsioptsias, C.</creatorcontrib><creatorcontrib>Paraskevopoulos, M.K.</creatorcontrib><creatorcontrib>Christofilos, D.</creatorcontrib><creatorcontrib>Andrieux, P.</creatorcontrib><creatorcontrib>Panayiotou, C.</creatorcontrib><title>Polymeric hydrogels and supercritical fluids: The mechanism of hydrogel foaming</title><title>Polymer (Guilford)</title><description>A novel method, the hydrogel foaming, is used in this work for the production of porous, polymer-based materials by processing with supercritical carbon dioxide (CO 2). This method is applied to crystalline hydrophilic polymers that, practically, exhibit no phase transition (melting or glass transition) below thermal decomposition temperature and, due to their crystallinity, do not absorb CO 2. Such polymers are mainly natural (semi)-crystalline polymers (e.g. chitosan, cellulose, etc.) for which the classical polymer foaming method with supercritical carbon dioxide is not applicable. The hydrogel foaming process (similar to classical polymer foaming) is applied to gelatin, chitosan, and gelatin/chitosan blend hydrogels that are physically crosslinked and may also be chemically crosslinked with glutaraldehyde vapour. After the foaming process, water is removed from the gels by mild freeze-drying leading to porous materials. Pore size control can be achieved by controlling different process parameters. Gelatin exhibits solubility in water up to high concentrations and forms thermoreversible hydrogels, rendering it a suitable choice for the investigation of the process mechanism. The mechanism of hydrogel foaming is explored on the basis of X-ray diffraction, calorimetry, rheology, sorption, Raman spectroscopy measurements and theoretical calculations with the NRHB (Non Random Hydrogen Bonding) equation-of-state model. The sorption and Raman spectroscopy measurements suggest that, besides dissolution in water (of the hydrogel), extensive CO 2 sorption by the polymer also occurs. Based on these results, a critical discussion is made and a mechanism for the hydrogel foaming is proposed. [Display omitted]</description><subject>Applied sciences</subject><subject>calorimetry</subject><subject>Carbon dioxide</subject><subject>cellulose</subject><subject>Chitosan</subject><subject>Crosslinking</subject><subject>crystal structure</subject><subject>Exact sciences and technology</subject><subject>Foaming</subject><subject>freeze drying</subject><subject>Gel</subject><subject>gelatin</subject><subject>Gelatins</subject><subject>glass transition</subject><subject>glutaraldehyde</subject><subject>hydrocolloids</subject><subject>Hydrogels</subject><subject>hydrogen bonding</subject><subject>hydrophilic polymers</subject><subject>Mathematical models</subject><subject>melting</subject><subject>Natural polymers</subject><subject>new methods</subject><subject>Physicochemistry of polymers</subject><subject>Proteins</subject><subject>Raman spectroscopy</subject><subject>rheology</subject><subject>Sorption</subject><subject>Starch and polysaccharides</subject><subject>Supercritical fluids</subject><subject>temperature</subject><subject>thermal degradation</subject><subject>vapors</subject><subject>water solubility</subject><subject>X-ray diffraction</subject><issn>0032-3861</issn><issn>1873-2291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWD9-grgX8bR1kux2d72IiF8gKKjnME0mbcrupiat0H9v6havwsBcnved4WHsjMOYA59cLcZL3246CmMBnI-hSCP32IjXlcyFaPg-GwFIkct6wg_ZUYwLABClKEbs9W2IOp3NNyb4GbUxw95kcb2koINbOY1tZtu1M_E6-5hT1pGeY-9il3n7F8qsx871sxN2YLGNdLrbx-zz4f7j7il_eX18vrt9yXUhxSovG6KaY10QVoKw0LWUdYUcjMEpt2Cg0unjQlortalEU_F6aksDUzkRvER5zC6H3mXwX2uKK9W5qKltsSe_jqpJYiZQAU9kOZA6-BgDWbUMrsOwURzU1p9aqJ0_tfWnoEgjU-5idwFjUmAD9trFv7AoRCUb2HLnA2fRK5yFxHy-p6IyOW4a_kvcDERyS98u3YnaUa_JuEB6pYx3__zyA_WLksg</recordid><startdate>20110608</startdate><enddate>20110608</enddate><creator>Tsioptsias, C.</creator><creator>Paraskevopoulos, M.K.</creator><creator>Christofilos, D.</creator><creator>Andrieux, P.</creator><creator>Panayiotou, C.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>20110608</creationdate><title>Polymeric hydrogels and supercritical fluids: The mechanism of hydrogel foaming</title><author>Tsioptsias, C. ; Paraskevopoulos, M.K. ; Christofilos, D. ; Andrieux, P. ; Panayiotou, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-59ee81a84ea72ea4c83387a10ddab1f0d07c03243ff3cd729718bf5d0b36215a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>calorimetry</topic><topic>Carbon dioxide</topic><topic>cellulose</topic><topic>Chitosan</topic><topic>Crosslinking</topic><topic>crystal structure</topic><topic>Exact sciences and technology</topic><topic>Foaming</topic><topic>freeze drying</topic><topic>Gel</topic><topic>gelatin</topic><topic>Gelatins</topic><topic>glass transition</topic><topic>glutaraldehyde</topic><topic>hydrocolloids</topic><topic>Hydrogels</topic><topic>hydrogen bonding</topic><topic>hydrophilic polymers</topic><topic>Mathematical models</topic><topic>melting</topic><topic>Natural polymers</topic><topic>new methods</topic><topic>Physicochemistry of polymers</topic><topic>Proteins</topic><topic>Raman spectroscopy</topic><topic>rheology</topic><topic>Sorption</topic><topic>Starch and polysaccharides</topic><topic>Supercritical fluids</topic><topic>temperature</topic><topic>thermal degradation</topic><topic>vapors</topic><topic>water solubility</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsioptsias, C.</creatorcontrib><creatorcontrib>Paraskevopoulos, M.K.</creatorcontrib><creatorcontrib>Christofilos, D.</creatorcontrib><creatorcontrib>Andrieux, P.</creatorcontrib><creatorcontrib>Panayiotou, C.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer (Guilford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsioptsias, C.</au><au>Paraskevopoulos, M.K.</au><au>Christofilos, D.</au><au>Andrieux, P.</au><au>Panayiotou, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polymeric hydrogels and supercritical fluids: The mechanism of hydrogel foaming</atitle><jtitle>Polymer (Guilford)</jtitle><date>2011-06-08</date><risdate>2011</risdate><volume>52</volume><issue>13</issue><spage>2819</spage><epage>2826</epage><pages>2819-2826</pages><issn>0032-3861</issn><eissn>1873-2291</eissn><coden>POLMAG</coden><abstract>A novel method, the hydrogel foaming, is used in this work for the production of porous, polymer-based materials by processing with supercritical carbon dioxide (CO 2). This method is applied to crystalline hydrophilic polymers that, practically, exhibit no phase transition (melting or glass transition) below thermal decomposition temperature and, due to their crystallinity, do not absorb CO 2. Such polymers are mainly natural (semi)-crystalline polymers (e.g. chitosan, cellulose, etc.) for which the classical polymer foaming method with supercritical carbon dioxide is not applicable. The hydrogel foaming process (similar to classical polymer foaming) is applied to gelatin, chitosan, and gelatin/chitosan blend hydrogels that are physically crosslinked and may also be chemically crosslinked with glutaraldehyde vapour. After the foaming process, water is removed from the gels by mild freeze-drying leading to porous materials. Pore size control can be achieved by controlling different process parameters. Gelatin exhibits solubility in water up to high concentrations and forms thermoreversible hydrogels, rendering it a suitable choice for the investigation of the process mechanism. The mechanism of hydrogel foaming is explored on the basis of X-ray diffraction, calorimetry, rheology, sorption, Raman spectroscopy measurements and theoretical calculations with the NRHB (Non Random Hydrogen Bonding) equation-of-state model. The sorption and Raman spectroscopy measurements suggest that, besides dissolution in water (of the hydrogel), extensive CO 2 sorption by the polymer also occurs. Based on these results, a critical discussion is made and a mechanism for the hydrogel foaming is proposed. [Display omitted]</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.polymer.2011.04.043</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0032-3861
ispartof Polymer (Guilford), 2011-06, Vol.52 (13), p.2819-2826
issn 0032-3861
1873-2291
language eng
recordid cdi_proquest_miscellaneous_901660701
source Elsevier ScienceDirect Journals Collection
subjects Applied sciences
calorimetry
Carbon dioxide
cellulose
Chitosan
Crosslinking
crystal structure
Exact sciences and technology
Foaming
freeze drying
Gel
gelatin
Gelatins
glass transition
glutaraldehyde
hydrocolloids
Hydrogels
hydrogen bonding
hydrophilic polymers
Mathematical models
melting
Natural polymers
new methods
Physicochemistry of polymers
Proteins
Raman spectroscopy
rheology
Sorption
Starch and polysaccharides
Supercritical fluids
temperature
thermal degradation
vapors
water solubility
X-ray diffraction
title Polymeric hydrogels and supercritical fluids: The mechanism of hydrogel foaming
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A11%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polymeric%20hydrogels%20and%20supercritical%20fluids:%20The%20mechanism%20of%20hydrogel%20foaming&rft.jtitle=Polymer%20(Guilford)&rft.au=Tsioptsias,%20C.&rft.date=2011-06-08&rft.volume=52&rft.issue=13&rft.spage=2819&rft.epage=2826&rft.pages=2819-2826&rft.issn=0032-3861&rft.eissn=1873-2291&rft.coden=POLMAG&rft_id=info:doi/10.1016/j.polymer.2011.04.043&rft_dat=%3Cproquest_cross%3E901660701%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=901660701&rft_id=info:pmid/&rft_els_id=S003238611100348X&rfr_iscdi=true