Polymeric hydrogels and supercritical fluids: The mechanism of hydrogel foaming
A novel method, the hydrogel foaming, is used in this work for the production of porous, polymer-based materials by processing with supercritical carbon dioxide (CO 2). This method is applied to crystalline hydrophilic polymers that, practically, exhibit no phase transition (melting or glass transit...
Gespeichert in:
Veröffentlicht in: | Polymer (Guilford) 2011-06, Vol.52 (13), p.2819-2826 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2826 |
---|---|
container_issue | 13 |
container_start_page | 2819 |
container_title | Polymer (Guilford) |
container_volume | 52 |
creator | Tsioptsias, C. Paraskevopoulos, M.K. Christofilos, D. Andrieux, P. Panayiotou, C. |
description | A novel method, the hydrogel foaming, is used in this work for the production of porous, polymer-based materials by processing with supercritical carbon dioxide (CO
2). This method is applied to crystalline hydrophilic polymers that, practically, exhibit no phase transition (melting or glass transition) below thermal decomposition temperature and, due to their crystallinity, do not absorb CO
2. Such polymers are mainly natural (semi)-crystalline polymers (e.g. chitosan, cellulose, etc.) for which the classical polymer foaming method with supercritical carbon dioxide is not applicable. The hydrogel foaming process (similar to classical polymer foaming) is applied to gelatin, chitosan, and gelatin/chitosan blend hydrogels that are physically crosslinked and may also be chemically crosslinked with glutaraldehyde vapour. After the foaming process, water is removed from the gels by mild freeze-drying leading to porous materials. Pore size control can be achieved by controlling different process parameters. Gelatin exhibits solubility in water up to high concentrations and forms thermoreversible hydrogels, rendering it a suitable choice for the investigation of the process mechanism. The mechanism of hydrogel foaming is explored on the basis of X-ray diffraction, calorimetry, rheology, sorption, Raman spectroscopy measurements and theoretical calculations with the NRHB (Non Random Hydrogen Bonding) equation-of-state model. The sorption and Raman spectroscopy measurements suggest that, besides dissolution in water (of the hydrogel), extensive CO
2 sorption by the polymer also occurs. Based on these results, a critical discussion is made and a mechanism for the hydrogel foaming is proposed.
[Display omitted] |
doi_str_mv | 10.1016/j.polymer.2011.04.043 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901660701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S003238611100348X</els_id><sourcerecordid>901660701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-59ee81a84ea72ea4c83387a10ddab1f0d07c03243ff3cd729718bf5d0b36215a3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWD9-grgX8bR1kux2d72IiF8gKKjnME0mbcrupiat0H9v6havwsBcnved4WHsjMOYA59cLcZL3246CmMBnI-hSCP32IjXlcyFaPg-GwFIkct6wg_ZUYwLABClKEbs9W2IOp3NNyb4GbUxw95kcb2koINbOY1tZtu1M_E6-5hT1pGeY-9il3n7F8qsx871sxN2YLGNdLrbx-zz4f7j7il_eX18vrt9yXUhxSovG6KaY10QVoKw0LWUdYUcjMEpt2Cg0unjQlortalEU_F6aksDUzkRvER5zC6H3mXwX2uKK9W5qKltsSe_jqpJYiZQAU9kOZA6-BgDWbUMrsOwURzU1p9aqJ0_tfWnoEgjU-5idwFjUmAD9trFv7AoRCUb2HLnA2fRK5yFxHy-p6IyOW4a_kvcDERyS98u3YnaUa_JuEB6pYx3__zyA_WLksg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901660701</pqid></control><display><type>article</type><title>Polymeric hydrogels and supercritical fluids: The mechanism of hydrogel foaming</title><source>Elsevier ScienceDirect Journals Collection</source><creator>Tsioptsias, C. ; Paraskevopoulos, M.K. ; Christofilos, D. ; Andrieux, P. ; Panayiotou, C.</creator><creatorcontrib>Tsioptsias, C. ; Paraskevopoulos, M.K. ; Christofilos, D. ; Andrieux, P. ; Panayiotou, C.</creatorcontrib><description>A novel method, the hydrogel foaming, is used in this work for the production of porous, polymer-based materials by processing with supercritical carbon dioxide (CO
2). This method is applied to crystalline hydrophilic polymers that, practically, exhibit no phase transition (melting or glass transition) below thermal decomposition temperature and, due to their crystallinity, do not absorb CO
2. Such polymers are mainly natural (semi)-crystalline polymers (e.g. chitosan, cellulose, etc.) for which the classical polymer foaming method with supercritical carbon dioxide is not applicable. The hydrogel foaming process (similar to classical polymer foaming) is applied to gelatin, chitosan, and gelatin/chitosan blend hydrogels that are physically crosslinked and may also be chemically crosslinked with glutaraldehyde vapour. After the foaming process, water is removed from the gels by mild freeze-drying leading to porous materials. Pore size control can be achieved by controlling different process parameters. Gelatin exhibits solubility in water up to high concentrations and forms thermoreversible hydrogels, rendering it a suitable choice for the investigation of the process mechanism. The mechanism of hydrogel foaming is explored on the basis of X-ray diffraction, calorimetry, rheology, sorption, Raman spectroscopy measurements and theoretical calculations with the NRHB (Non Random Hydrogen Bonding) equation-of-state model. The sorption and Raman spectroscopy measurements suggest that, besides dissolution in water (of the hydrogel), extensive CO
2 sorption by the polymer also occurs. Based on these results, a critical discussion is made and a mechanism for the hydrogel foaming is proposed.
[Display omitted]</description><identifier>ISSN: 0032-3861</identifier><identifier>EISSN: 1873-2291</identifier><identifier>DOI: 10.1016/j.polymer.2011.04.043</identifier><identifier>CODEN: POLMAG</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; calorimetry ; Carbon dioxide ; cellulose ; Chitosan ; Crosslinking ; crystal structure ; Exact sciences and technology ; Foaming ; freeze drying ; Gel ; gelatin ; Gelatins ; glass transition ; glutaraldehyde ; hydrocolloids ; Hydrogels ; hydrogen bonding ; hydrophilic polymers ; Mathematical models ; melting ; Natural polymers ; new methods ; Physicochemistry of polymers ; Proteins ; Raman spectroscopy ; rheology ; Sorption ; Starch and polysaccharides ; Supercritical fluids ; temperature ; thermal degradation ; vapors ; water solubility ; X-ray diffraction</subject><ispartof>Polymer (Guilford), 2011-06, Vol.52 (13), p.2819-2826</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-59ee81a84ea72ea4c83387a10ddab1f0d07c03243ff3cd729718bf5d0b36215a3</citedby><cites>FETCH-LOGICAL-c432t-59ee81a84ea72ea4c83387a10ddab1f0d07c03243ff3cd729718bf5d0b36215a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S003238611100348X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24273903$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tsioptsias, C.</creatorcontrib><creatorcontrib>Paraskevopoulos, M.K.</creatorcontrib><creatorcontrib>Christofilos, D.</creatorcontrib><creatorcontrib>Andrieux, P.</creatorcontrib><creatorcontrib>Panayiotou, C.</creatorcontrib><title>Polymeric hydrogels and supercritical fluids: The mechanism of hydrogel foaming</title><title>Polymer (Guilford)</title><description>A novel method, the hydrogel foaming, is used in this work for the production of porous, polymer-based materials by processing with supercritical carbon dioxide (CO
2). This method is applied to crystalline hydrophilic polymers that, practically, exhibit no phase transition (melting or glass transition) below thermal decomposition temperature and, due to their crystallinity, do not absorb CO
2. Such polymers are mainly natural (semi)-crystalline polymers (e.g. chitosan, cellulose, etc.) for which the classical polymer foaming method with supercritical carbon dioxide is not applicable. The hydrogel foaming process (similar to classical polymer foaming) is applied to gelatin, chitosan, and gelatin/chitosan blend hydrogels that are physically crosslinked and may also be chemically crosslinked with glutaraldehyde vapour. After the foaming process, water is removed from the gels by mild freeze-drying leading to porous materials. Pore size control can be achieved by controlling different process parameters. Gelatin exhibits solubility in water up to high concentrations and forms thermoreversible hydrogels, rendering it a suitable choice for the investigation of the process mechanism. The mechanism of hydrogel foaming is explored on the basis of X-ray diffraction, calorimetry, rheology, sorption, Raman spectroscopy measurements and theoretical calculations with the NRHB (Non Random Hydrogen Bonding) equation-of-state model. The sorption and Raman spectroscopy measurements suggest that, besides dissolution in water (of the hydrogel), extensive CO
2 sorption by the polymer also occurs. Based on these results, a critical discussion is made and a mechanism for the hydrogel foaming is proposed.
[Display omitted]</description><subject>Applied sciences</subject><subject>calorimetry</subject><subject>Carbon dioxide</subject><subject>cellulose</subject><subject>Chitosan</subject><subject>Crosslinking</subject><subject>crystal structure</subject><subject>Exact sciences and technology</subject><subject>Foaming</subject><subject>freeze drying</subject><subject>Gel</subject><subject>gelatin</subject><subject>Gelatins</subject><subject>glass transition</subject><subject>glutaraldehyde</subject><subject>hydrocolloids</subject><subject>Hydrogels</subject><subject>hydrogen bonding</subject><subject>hydrophilic polymers</subject><subject>Mathematical models</subject><subject>melting</subject><subject>Natural polymers</subject><subject>new methods</subject><subject>Physicochemistry of polymers</subject><subject>Proteins</subject><subject>Raman spectroscopy</subject><subject>rheology</subject><subject>Sorption</subject><subject>Starch and polysaccharides</subject><subject>Supercritical fluids</subject><subject>temperature</subject><subject>thermal degradation</subject><subject>vapors</subject><subject>water solubility</subject><subject>X-ray diffraction</subject><issn>0032-3861</issn><issn>1873-2291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWD9-grgX8bR1kux2d72IiF8gKKjnME0mbcrupiat0H9v6havwsBcnved4WHsjMOYA59cLcZL3246CmMBnI-hSCP32IjXlcyFaPg-GwFIkct6wg_ZUYwLABClKEbs9W2IOp3NNyb4GbUxw95kcb2koINbOY1tZtu1M_E6-5hT1pGeY-9il3n7F8qsx871sxN2YLGNdLrbx-zz4f7j7il_eX18vrt9yXUhxSovG6KaY10QVoKw0LWUdYUcjMEpt2Cg0unjQlortalEU_F6aksDUzkRvER5zC6H3mXwX2uKK9W5qKltsSe_jqpJYiZQAU9kOZA6-BgDWbUMrsOwURzU1p9aqJ0_tfWnoEgjU-5idwFjUmAD9trFv7AoRCUb2HLnA2fRK5yFxHy-p6IyOW4a_kvcDERyS98u3YnaUa_JuEB6pYx3__zyA_WLksg</recordid><startdate>20110608</startdate><enddate>20110608</enddate><creator>Tsioptsias, C.</creator><creator>Paraskevopoulos, M.K.</creator><creator>Christofilos, D.</creator><creator>Andrieux, P.</creator><creator>Panayiotou, C.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>20110608</creationdate><title>Polymeric hydrogels and supercritical fluids: The mechanism of hydrogel foaming</title><author>Tsioptsias, C. ; Paraskevopoulos, M.K. ; Christofilos, D. ; Andrieux, P. ; Panayiotou, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-59ee81a84ea72ea4c83387a10ddab1f0d07c03243ff3cd729718bf5d0b36215a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>calorimetry</topic><topic>Carbon dioxide</topic><topic>cellulose</topic><topic>Chitosan</topic><topic>Crosslinking</topic><topic>crystal structure</topic><topic>Exact sciences and technology</topic><topic>Foaming</topic><topic>freeze drying</topic><topic>Gel</topic><topic>gelatin</topic><topic>Gelatins</topic><topic>glass transition</topic><topic>glutaraldehyde</topic><topic>hydrocolloids</topic><topic>Hydrogels</topic><topic>hydrogen bonding</topic><topic>hydrophilic polymers</topic><topic>Mathematical models</topic><topic>melting</topic><topic>Natural polymers</topic><topic>new methods</topic><topic>Physicochemistry of polymers</topic><topic>Proteins</topic><topic>Raman spectroscopy</topic><topic>rheology</topic><topic>Sorption</topic><topic>Starch and polysaccharides</topic><topic>Supercritical fluids</topic><topic>temperature</topic><topic>thermal degradation</topic><topic>vapors</topic><topic>water solubility</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsioptsias, C.</creatorcontrib><creatorcontrib>Paraskevopoulos, M.K.</creatorcontrib><creatorcontrib>Christofilos, D.</creatorcontrib><creatorcontrib>Andrieux, P.</creatorcontrib><creatorcontrib>Panayiotou, C.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer (Guilford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsioptsias, C.</au><au>Paraskevopoulos, M.K.</au><au>Christofilos, D.</au><au>Andrieux, P.</au><au>Panayiotou, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polymeric hydrogels and supercritical fluids: The mechanism of hydrogel foaming</atitle><jtitle>Polymer (Guilford)</jtitle><date>2011-06-08</date><risdate>2011</risdate><volume>52</volume><issue>13</issue><spage>2819</spage><epage>2826</epage><pages>2819-2826</pages><issn>0032-3861</issn><eissn>1873-2291</eissn><coden>POLMAG</coden><abstract>A novel method, the hydrogel foaming, is used in this work for the production of porous, polymer-based materials by processing with supercritical carbon dioxide (CO
2). This method is applied to crystalline hydrophilic polymers that, practically, exhibit no phase transition (melting or glass transition) below thermal decomposition temperature and, due to their crystallinity, do not absorb CO
2. Such polymers are mainly natural (semi)-crystalline polymers (e.g. chitosan, cellulose, etc.) for which the classical polymer foaming method with supercritical carbon dioxide is not applicable. The hydrogel foaming process (similar to classical polymer foaming) is applied to gelatin, chitosan, and gelatin/chitosan blend hydrogels that are physically crosslinked and may also be chemically crosslinked with glutaraldehyde vapour. After the foaming process, water is removed from the gels by mild freeze-drying leading to porous materials. Pore size control can be achieved by controlling different process parameters. Gelatin exhibits solubility in water up to high concentrations and forms thermoreversible hydrogels, rendering it a suitable choice for the investigation of the process mechanism. The mechanism of hydrogel foaming is explored on the basis of X-ray diffraction, calorimetry, rheology, sorption, Raman spectroscopy measurements and theoretical calculations with the NRHB (Non Random Hydrogen Bonding) equation-of-state model. The sorption and Raman spectroscopy measurements suggest that, besides dissolution in water (of the hydrogel), extensive CO
2 sorption by the polymer also occurs. Based on these results, a critical discussion is made and a mechanism for the hydrogel foaming is proposed.
[Display omitted]</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.polymer.2011.04.043</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-3861 |
ispartof | Polymer (Guilford), 2011-06, Vol.52 (13), p.2819-2826 |
issn | 0032-3861 1873-2291 |
language | eng |
recordid | cdi_proquest_miscellaneous_901660701 |
source | Elsevier ScienceDirect Journals Collection |
subjects | Applied sciences calorimetry Carbon dioxide cellulose Chitosan Crosslinking crystal structure Exact sciences and technology Foaming freeze drying Gel gelatin Gelatins glass transition glutaraldehyde hydrocolloids Hydrogels hydrogen bonding hydrophilic polymers Mathematical models melting Natural polymers new methods Physicochemistry of polymers Proteins Raman spectroscopy rheology Sorption Starch and polysaccharides Supercritical fluids temperature thermal degradation vapors water solubility X-ray diffraction |
title | Polymeric hydrogels and supercritical fluids: The mechanism of hydrogel foaming |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A11%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polymeric%20hydrogels%20and%20supercritical%20fluids:%20The%20mechanism%20of%20hydrogel%20foaming&rft.jtitle=Polymer%20(Guilford)&rft.au=Tsioptsias,%20C.&rft.date=2011-06-08&rft.volume=52&rft.issue=13&rft.spage=2819&rft.epage=2826&rft.pages=2819-2826&rft.issn=0032-3861&rft.eissn=1873-2291&rft.coden=POLMAG&rft_id=info:doi/10.1016/j.polymer.2011.04.043&rft_dat=%3Cproquest_cross%3E901660701%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=901660701&rft_id=info:pmid/&rft_els_id=S003238611100348X&rfr_iscdi=true |