Interconnect-integrated solid oxide fuel cell with high temperature sinter-joining process

In this study, a recently developed interconnect-integrated solid oxide fuel cell (SOFC) is characterized in terms of cell components, cell area enlargement, potential cathode material and mechanical/electrochemical properties. First, a high temperature sinter-joining process is used to fabricate an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of hydrogen energy 2010-11, Vol.35 (21), p.11878-11889
Hauptverfasser: Baek, Seung-Wook, Jeong, Jihoon, Kim, Jung Hyun, Lee, Changbo, Bae, Joongmyeon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11889
container_issue 21
container_start_page 11878
container_title International journal of hydrogen energy
container_volume 35
creator Baek, Seung-Wook
Jeong, Jihoon
Kim, Jung Hyun
Lee, Changbo
Bae, Joongmyeon
description In this study, a recently developed interconnect-integrated solid oxide fuel cell (SOFC) is characterized in terms of cell components, cell area enlargement, potential cathode material and mechanical/electrochemical properties. First, a high temperature sinter-joining process is used to fabricate an interconnect-integrated SOFC. This manuscript describes the interconnect material and the slurry composition design for bonding the interconnect and ceramic cell. The oxidation and thermal expansion characteristics of the starting materials of the interconnect-integrated cell, including the interconnect, metal powder of the bonding layer and metal powder/8YSZ/NiO compositions, are investigated to enhance both cell joining performance and cell stability during operation. Cell area enlargements of 50 mm × 50 mm and 100 mm × 100 mm are successfully realized using the optimized cell processing conditions. The cathode of the interconnect-integrated cell cannot be sintered in an air atmosphere due to the oxidation of the interconnect. Accordingly, a Sm 1.0Ba 0.5Sr 0.5Co 2.0O 5−d/Gd 0.1Ce 0.9O 1.9 (50:50 wt%) (SBSCO50) composite cathode is selected and used as the potential in situ cathode for the interconnect-integrated SOFC. The in situ sintering properties of a conventional LSM82/8YSZ(6:4) composite cathode is also studied as the reference material. The mechanical and electrochemical performance of the resulting interconnect-integrated cell is tested. The mechanical strengths of the anode-supported cell and the interconnect-integrated cell are compared, and the electrochemical properties of the interconnect-integrated button cell and the large area (50 mm × 50 mm) interconnect-integrated cell are investigated. The button cell of a SBSCO50 composite cathode exhibits a maximum power density of 0.57 W cm −2 at 800 °C. The large area single repeat unit with an area of 50 mm × 50 mm with a SBSCO50 in situ cathode exhibits a maximum power output of 4.5 W at an operating temperature of 800 °C.
doi_str_mv 10.1016/j.ijhydene.2010.07.108
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901660015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360319910014965</els_id><sourcerecordid>875034511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-5dcd03c1819746bb2d6302ae666c34f548a53654f910f257a0c002bef3528a683</originalsourceid><addsrcrecordid>eNqFkctu2zAQRYkiBeqk_YWCmyIrOUPxqV2LoI8AAbJJN90QNDmyKciUS8pp8vel4CTbrIi5OMM7c4eQzwzWDJi6GtZx2D0FTLhuoYqgq27ekRUzumu4MPqMrIAraDjrug_kvJQBgGkQ3Yr8uUkzZj-lhH5uYi222c0YaJnGGOj0GAPS_ogj9TiO9F-cd3QXtzs64_6AFT1mpGXpy80wxRTTlh7y5LGUj-R978aCn57fC_L7x_f761_N7d3Pm-tvt40XQs-NDD4A98ywTgu12bRBcWgdKqU8F70UxkmupOg7Bn0rtQMP0G6w57I1Thl-QS5P_1bfv0css93HskzrEk7HYrsakqoLyzdJoyVwIRmrpDqRPk-lZOztIce9y0-WgV1St4N9Sd0uqVvQVV-G-fJs4Yp3Y59d8rG8drect0ZxVbmvJw5rMg8Rsy0-YvIYYq6XsGGKb1n9B8OBnBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>875034511</pqid></control><display><type>article</type><title>Interconnect-integrated solid oxide fuel cell with high temperature sinter-joining process</title><source>Elsevier ScienceDirect Journals</source><creator>Baek, Seung-Wook ; Jeong, Jihoon ; Kim, Jung Hyun ; Lee, Changbo ; Bae, Joongmyeon</creator><creatorcontrib>Baek, Seung-Wook ; Jeong, Jihoon ; Kim, Jung Hyun ; Lee, Changbo ; Bae, Joongmyeon</creatorcontrib><description>In this study, a recently developed interconnect-integrated solid oxide fuel cell (SOFC) is characterized in terms of cell components, cell area enlargement, potential cathode material and mechanical/electrochemical properties. First, a high temperature sinter-joining process is used to fabricate an interconnect-integrated SOFC. This manuscript describes the interconnect material and the slurry composition design for bonding the interconnect and ceramic cell. The oxidation and thermal expansion characteristics of the starting materials of the interconnect-integrated cell, including the interconnect, metal powder of the bonding layer and metal powder/8YSZ/NiO compositions, are investigated to enhance both cell joining performance and cell stability during operation. Cell area enlargements of 50 mm × 50 mm and 100 mm × 100 mm are successfully realized using the optimized cell processing conditions. The cathode of the interconnect-integrated cell cannot be sintered in an air atmosphere due to the oxidation of the interconnect. Accordingly, a Sm 1.0Ba 0.5Sr 0.5Co 2.0O 5−d/Gd 0.1Ce 0.9O 1.9 (50:50 wt%) (SBSCO50) composite cathode is selected and used as the potential in situ cathode for the interconnect-integrated SOFC. The in situ sintering properties of a conventional LSM82/8YSZ(6:4) composite cathode is also studied as the reference material. The mechanical and electrochemical performance of the resulting interconnect-integrated cell is tested. The mechanical strengths of the anode-supported cell and the interconnect-integrated cell are compared, and the electrochemical properties of the interconnect-integrated button cell and the large area (50 mm × 50 mm) interconnect-integrated cell are investigated. The button cell of a SBSCO50 composite cathode exhibits a maximum power density of 0.57 W cm −2 at 800 °C. The large area single repeat unit with an area of 50 mm × 50 mm with a SBSCO50 in situ cathode exhibits a maximum power output of 4.5 W at an operating temperature of 800 °C.</description><identifier>ISSN: 0360-3199</identifier><identifier>EISSN: 1879-3487</identifier><identifier>DOI: 10.1016/j.ijhydene.2010.07.108</identifier><identifier>CODEN: IJHEDX</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Alternative fuels. Production and utilization ; Applied sciences ; Bonding ; Buttons ; Cathodes ; Energy ; Enlargement ; Exact sciences and technology ; Fuels ; Hydrogen ; Interconnect-integrated solid oxide fuel cell ; Large area cell ; Metal powders ; Oxidation ; Particulate composites ; Power density ; Sinter-joining ; Solid oxide fuel cells</subject><ispartof>International journal of hydrogen energy, 2010-11, Vol.35 (21), p.11878-11889</ispartof><rights>2010 Professor T. Nejat Veziroglu</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-5dcd03c1819746bb2d6302ae666c34f548a53654f910f257a0c002bef3528a683</citedby><cites>FETCH-LOGICAL-c447t-5dcd03c1819746bb2d6302ae666c34f548a53654f910f257a0c002bef3528a683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0360319910014965$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23328636$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Baek, Seung-Wook</creatorcontrib><creatorcontrib>Jeong, Jihoon</creatorcontrib><creatorcontrib>Kim, Jung Hyun</creatorcontrib><creatorcontrib>Lee, Changbo</creatorcontrib><creatorcontrib>Bae, Joongmyeon</creatorcontrib><title>Interconnect-integrated solid oxide fuel cell with high temperature sinter-joining process</title><title>International journal of hydrogen energy</title><description>In this study, a recently developed interconnect-integrated solid oxide fuel cell (SOFC) is characterized in terms of cell components, cell area enlargement, potential cathode material and mechanical/electrochemical properties. First, a high temperature sinter-joining process is used to fabricate an interconnect-integrated SOFC. This manuscript describes the interconnect material and the slurry composition design for bonding the interconnect and ceramic cell. The oxidation and thermal expansion characteristics of the starting materials of the interconnect-integrated cell, including the interconnect, metal powder of the bonding layer and metal powder/8YSZ/NiO compositions, are investigated to enhance both cell joining performance and cell stability during operation. Cell area enlargements of 50 mm × 50 mm and 100 mm × 100 mm are successfully realized using the optimized cell processing conditions. The cathode of the interconnect-integrated cell cannot be sintered in an air atmosphere due to the oxidation of the interconnect. Accordingly, a Sm 1.0Ba 0.5Sr 0.5Co 2.0O 5−d/Gd 0.1Ce 0.9O 1.9 (50:50 wt%) (SBSCO50) composite cathode is selected and used as the potential in situ cathode for the interconnect-integrated SOFC. The in situ sintering properties of a conventional LSM82/8YSZ(6:4) composite cathode is also studied as the reference material. The mechanical and electrochemical performance of the resulting interconnect-integrated cell is tested. The mechanical strengths of the anode-supported cell and the interconnect-integrated cell are compared, and the electrochemical properties of the interconnect-integrated button cell and the large area (50 mm × 50 mm) interconnect-integrated cell are investigated. The button cell of a SBSCO50 composite cathode exhibits a maximum power density of 0.57 W cm −2 at 800 °C. The large area single repeat unit with an area of 50 mm × 50 mm with a SBSCO50 in situ cathode exhibits a maximum power output of 4.5 W at an operating temperature of 800 °C.</description><subject>Alternative fuels. Production and utilization</subject><subject>Applied sciences</subject><subject>Bonding</subject><subject>Buttons</subject><subject>Cathodes</subject><subject>Energy</subject><subject>Enlargement</subject><subject>Exact sciences and technology</subject><subject>Fuels</subject><subject>Hydrogen</subject><subject>Interconnect-integrated solid oxide fuel cell</subject><subject>Large area cell</subject><subject>Metal powders</subject><subject>Oxidation</subject><subject>Particulate composites</subject><subject>Power density</subject><subject>Sinter-joining</subject><subject>Solid oxide fuel cells</subject><issn>0360-3199</issn><issn>1879-3487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkctu2zAQRYkiBeqk_YWCmyIrOUPxqV2LoI8AAbJJN90QNDmyKciUS8pp8vel4CTbrIi5OMM7c4eQzwzWDJi6GtZx2D0FTLhuoYqgq27ekRUzumu4MPqMrIAraDjrug_kvJQBgGkQ3Yr8uUkzZj-lhH5uYi222c0YaJnGGOj0GAPS_ogj9TiO9F-cd3QXtzs64_6AFT1mpGXpy80wxRTTlh7y5LGUj-R978aCn57fC_L7x_f761_N7d3Pm-tvt40XQs-NDD4A98ywTgu12bRBcWgdKqU8F70UxkmupOg7Bn0rtQMP0G6w57I1Thl-QS5P_1bfv0css93HskzrEk7HYrsakqoLyzdJoyVwIRmrpDqRPk-lZOztIce9y0-WgV1St4N9Sd0uqVvQVV-G-fJs4Yp3Y59d8rG8drect0ZxVbmvJw5rMg8Rsy0-YvIYYq6XsGGKb1n9B8OBnBA</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Baek, Seung-Wook</creator><creator>Jeong, Jihoon</creator><creator>Kim, Jung Hyun</creator><creator>Lee, Changbo</creator><creator>Bae, Joongmyeon</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SP</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20101101</creationdate><title>Interconnect-integrated solid oxide fuel cell with high temperature sinter-joining process</title><author>Baek, Seung-Wook ; Jeong, Jihoon ; Kim, Jung Hyun ; Lee, Changbo ; Bae, Joongmyeon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-5dcd03c1819746bb2d6302ae666c34f548a53654f910f257a0c002bef3528a683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Alternative fuels. Production and utilization</topic><topic>Applied sciences</topic><topic>Bonding</topic><topic>Buttons</topic><topic>Cathodes</topic><topic>Energy</topic><topic>Enlargement</topic><topic>Exact sciences and technology</topic><topic>Fuels</topic><topic>Hydrogen</topic><topic>Interconnect-integrated solid oxide fuel cell</topic><topic>Large area cell</topic><topic>Metal powders</topic><topic>Oxidation</topic><topic>Particulate composites</topic><topic>Power density</topic><topic>Sinter-joining</topic><topic>Solid oxide fuel cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baek, Seung-Wook</creatorcontrib><creatorcontrib>Jeong, Jihoon</creatorcontrib><creatorcontrib>Kim, Jung Hyun</creatorcontrib><creatorcontrib>Lee, Changbo</creatorcontrib><creatorcontrib>Bae, Joongmyeon</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of hydrogen energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baek, Seung-Wook</au><au>Jeong, Jihoon</au><au>Kim, Jung Hyun</au><au>Lee, Changbo</au><au>Bae, Joongmyeon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interconnect-integrated solid oxide fuel cell with high temperature sinter-joining process</atitle><jtitle>International journal of hydrogen energy</jtitle><date>2010-11-01</date><risdate>2010</risdate><volume>35</volume><issue>21</issue><spage>11878</spage><epage>11889</epage><pages>11878-11889</pages><issn>0360-3199</issn><eissn>1879-3487</eissn><coden>IJHEDX</coden><abstract>In this study, a recently developed interconnect-integrated solid oxide fuel cell (SOFC) is characterized in terms of cell components, cell area enlargement, potential cathode material and mechanical/electrochemical properties. First, a high temperature sinter-joining process is used to fabricate an interconnect-integrated SOFC. This manuscript describes the interconnect material and the slurry composition design for bonding the interconnect and ceramic cell. The oxidation and thermal expansion characteristics of the starting materials of the interconnect-integrated cell, including the interconnect, metal powder of the bonding layer and metal powder/8YSZ/NiO compositions, are investigated to enhance both cell joining performance and cell stability during operation. Cell area enlargements of 50 mm × 50 mm and 100 mm × 100 mm are successfully realized using the optimized cell processing conditions. The cathode of the interconnect-integrated cell cannot be sintered in an air atmosphere due to the oxidation of the interconnect. Accordingly, a Sm 1.0Ba 0.5Sr 0.5Co 2.0O 5−d/Gd 0.1Ce 0.9O 1.9 (50:50 wt%) (SBSCO50) composite cathode is selected and used as the potential in situ cathode for the interconnect-integrated SOFC. The in situ sintering properties of a conventional LSM82/8YSZ(6:4) composite cathode is also studied as the reference material. The mechanical and electrochemical performance of the resulting interconnect-integrated cell is tested. The mechanical strengths of the anode-supported cell and the interconnect-integrated cell are compared, and the electrochemical properties of the interconnect-integrated button cell and the large area (50 mm × 50 mm) interconnect-integrated cell are investigated. The button cell of a SBSCO50 composite cathode exhibits a maximum power density of 0.57 W cm −2 at 800 °C. The large area single repeat unit with an area of 50 mm × 50 mm with a SBSCO50 in situ cathode exhibits a maximum power output of 4.5 W at an operating temperature of 800 °C.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijhydene.2010.07.108</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0360-3199
ispartof International journal of hydrogen energy, 2010-11, Vol.35 (21), p.11878-11889
issn 0360-3199
1879-3487
language eng
recordid cdi_proquest_miscellaneous_901660015
source Elsevier ScienceDirect Journals
subjects Alternative fuels. Production and utilization
Applied sciences
Bonding
Buttons
Cathodes
Energy
Enlargement
Exact sciences and technology
Fuels
Hydrogen
Interconnect-integrated solid oxide fuel cell
Large area cell
Metal powders
Oxidation
Particulate composites
Power density
Sinter-joining
Solid oxide fuel cells
title Interconnect-integrated solid oxide fuel cell with high temperature sinter-joining process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T03%3A09%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interconnect-integrated%20solid%20oxide%20fuel%20cell%20with%20high%20temperature%20sinter-joining%20process&rft.jtitle=International%20journal%20of%20hydrogen%20energy&rft.au=Baek,%20Seung-Wook&rft.date=2010-11-01&rft.volume=35&rft.issue=21&rft.spage=11878&rft.epage=11889&rft.pages=11878-11889&rft.issn=0360-3199&rft.eissn=1879-3487&rft.coden=IJHEDX&rft_id=info:doi/10.1016/j.ijhydene.2010.07.108&rft_dat=%3Cproquest_cross%3E875034511%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=875034511&rft_id=info:pmid/&rft_els_id=S0360319910014965&rfr_iscdi=true