Interconnect-integrated solid oxide fuel cell with high temperature sinter-joining process
In this study, a recently developed interconnect-integrated solid oxide fuel cell (SOFC) is characterized in terms of cell components, cell area enlargement, potential cathode material and mechanical/electrochemical properties. First, a high temperature sinter-joining process is used to fabricate an...
Gespeichert in:
Veröffentlicht in: | International journal of hydrogen energy 2010-11, Vol.35 (21), p.11878-11889 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11889 |
---|---|
container_issue | 21 |
container_start_page | 11878 |
container_title | International journal of hydrogen energy |
container_volume | 35 |
creator | Baek, Seung-Wook Jeong, Jihoon Kim, Jung Hyun Lee, Changbo Bae, Joongmyeon |
description | In this study, a recently developed interconnect-integrated solid oxide fuel cell (SOFC) is characterized in terms of cell components, cell area enlargement, potential cathode material and mechanical/electrochemical properties. First, a high temperature sinter-joining process is used to fabricate an interconnect-integrated SOFC. This manuscript describes the interconnect material and the slurry composition design for bonding the interconnect and ceramic cell. The oxidation and thermal expansion characteristics of the starting materials of the interconnect-integrated cell, including the interconnect, metal powder of the bonding layer and metal powder/8YSZ/NiO compositions, are investigated to enhance both cell joining performance and cell stability during operation. Cell area enlargements of 50 mm × 50 mm and 100 mm × 100 mm are successfully realized using the optimized cell processing conditions. The cathode of the interconnect-integrated cell cannot be sintered in an air atmosphere due to the oxidation of the interconnect. Accordingly, a Sm
1.0Ba
0.5Sr
0.5Co
2.0O
5−d/Gd
0.1Ce
0.9O
1.9 (50:50 wt%) (SBSCO50) composite cathode is selected and used as the potential
in situ cathode for the interconnect-integrated SOFC. The
in situ sintering properties of a conventional LSM82/8YSZ(6:4) composite cathode is also studied as the reference material. The mechanical and electrochemical performance of the resulting interconnect-integrated cell is tested. The mechanical strengths of the anode-supported cell and the interconnect-integrated cell are compared, and the electrochemical properties of the interconnect-integrated button cell and the large area (50 mm × 50 mm) interconnect-integrated cell are investigated. The button cell of a SBSCO50 composite cathode exhibits a maximum power density of 0.57 W cm
−2 at 800 °C. The large area single repeat unit with an area of 50 mm × 50 mm with a SBSCO50
in situ cathode exhibits a maximum power output of 4.5 W at an operating temperature of 800 °C. |
doi_str_mv | 10.1016/j.ijhydene.2010.07.108 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901660015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360319910014965</els_id><sourcerecordid>875034511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-5dcd03c1819746bb2d6302ae666c34f548a53654f910f257a0c002bef3528a683</originalsourceid><addsrcrecordid>eNqFkctu2zAQRYkiBeqk_YWCmyIrOUPxqV2LoI8AAbJJN90QNDmyKciUS8pp8vel4CTbrIi5OMM7c4eQzwzWDJi6GtZx2D0FTLhuoYqgq27ekRUzumu4MPqMrIAraDjrug_kvJQBgGkQ3Yr8uUkzZj-lhH5uYi222c0YaJnGGOj0GAPS_ogj9TiO9F-cd3QXtzs64_6AFT1mpGXpy80wxRTTlh7y5LGUj-R978aCn57fC_L7x_f761_N7d3Pm-tvt40XQs-NDD4A98ywTgu12bRBcWgdKqU8F70UxkmupOg7Bn0rtQMP0G6w57I1Thl-QS5P_1bfv0css93HskzrEk7HYrsakqoLyzdJoyVwIRmrpDqRPk-lZOztIce9y0-WgV1St4N9Sd0uqVvQVV-G-fJs4Yp3Y59d8rG8drect0ZxVbmvJw5rMg8Rsy0-YvIYYq6XsGGKb1n9B8OBnBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>875034511</pqid></control><display><type>article</type><title>Interconnect-integrated solid oxide fuel cell with high temperature sinter-joining process</title><source>Elsevier ScienceDirect Journals</source><creator>Baek, Seung-Wook ; Jeong, Jihoon ; Kim, Jung Hyun ; Lee, Changbo ; Bae, Joongmyeon</creator><creatorcontrib>Baek, Seung-Wook ; Jeong, Jihoon ; Kim, Jung Hyun ; Lee, Changbo ; Bae, Joongmyeon</creatorcontrib><description>In this study, a recently developed interconnect-integrated solid oxide fuel cell (SOFC) is characterized in terms of cell components, cell area enlargement, potential cathode material and mechanical/electrochemical properties. First, a high temperature sinter-joining process is used to fabricate an interconnect-integrated SOFC. This manuscript describes the interconnect material and the slurry composition design for bonding the interconnect and ceramic cell. The oxidation and thermal expansion characteristics of the starting materials of the interconnect-integrated cell, including the interconnect, metal powder of the bonding layer and metal powder/8YSZ/NiO compositions, are investigated to enhance both cell joining performance and cell stability during operation. Cell area enlargements of 50 mm × 50 mm and 100 mm × 100 mm are successfully realized using the optimized cell processing conditions. The cathode of the interconnect-integrated cell cannot be sintered in an air atmosphere due to the oxidation of the interconnect. Accordingly, a Sm
1.0Ba
0.5Sr
0.5Co
2.0O
5−d/Gd
0.1Ce
0.9O
1.9 (50:50 wt%) (SBSCO50) composite cathode is selected and used as the potential
in situ cathode for the interconnect-integrated SOFC. The
in situ sintering properties of a conventional LSM82/8YSZ(6:4) composite cathode is also studied as the reference material. The mechanical and electrochemical performance of the resulting interconnect-integrated cell is tested. The mechanical strengths of the anode-supported cell and the interconnect-integrated cell are compared, and the electrochemical properties of the interconnect-integrated button cell and the large area (50 mm × 50 mm) interconnect-integrated cell are investigated. The button cell of a SBSCO50 composite cathode exhibits a maximum power density of 0.57 W cm
−2 at 800 °C. The large area single repeat unit with an area of 50 mm × 50 mm with a SBSCO50
in situ cathode exhibits a maximum power output of 4.5 W at an operating temperature of 800 °C.</description><identifier>ISSN: 0360-3199</identifier><identifier>EISSN: 1879-3487</identifier><identifier>DOI: 10.1016/j.ijhydene.2010.07.108</identifier><identifier>CODEN: IJHEDX</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Alternative fuels. Production and utilization ; Applied sciences ; Bonding ; Buttons ; Cathodes ; Energy ; Enlargement ; Exact sciences and technology ; Fuels ; Hydrogen ; Interconnect-integrated solid oxide fuel cell ; Large area cell ; Metal powders ; Oxidation ; Particulate composites ; Power density ; Sinter-joining ; Solid oxide fuel cells</subject><ispartof>International journal of hydrogen energy, 2010-11, Vol.35 (21), p.11878-11889</ispartof><rights>2010 Professor T. Nejat Veziroglu</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-5dcd03c1819746bb2d6302ae666c34f548a53654f910f257a0c002bef3528a683</citedby><cites>FETCH-LOGICAL-c447t-5dcd03c1819746bb2d6302ae666c34f548a53654f910f257a0c002bef3528a683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0360319910014965$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23328636$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Baek, Seung-Wook</creatorcontrib><creatorcontrib>Jeong, Jihoon</creatorcontrib><creatorcontrib>Kim, Jung Hyun</creatorcontrib><creatorcontrib>Lee, Changbo</creatorcontrib><creatorcontrib>Bae, Joongmyeon</creatorcontrib><title>Interconnect-integrated solid oxide fuel cell with high temperature sinter-joining process</title><title>International journal of hydrogen energy</title><description>In this study, a recently developed interconnect-integrated solid oxide fuel cell (SOFC) is characterized in terms of cell components, cell area enlargement, potential cathode material and mechanical/electrochemical properties. First, a high temperature sinter-joining process is used to fabricate an interconnect-integrated SOFC. This manuscript describes the interconnect material and the slurry composition design for bonding the interconnect and ceramic cell. The oxidation and thermal expansion characteristics of the starting materials of the interconnect-integrated cell, including the interconnect, metal powder of the bonding layer and metal powder/8YSZ/NiO compositions, are investigated to enhance both cell joining performance and cell stability during operation. Cell area enlargements of 50 mm × 50 mm and 100 mm × 100 mm are successfully realized using the optimized cell processing conditions. The cathode of the interconnect-integrated cell cannot be sintered in an air atmosphere due to the oxidation of the interconnect. Accordingly, a Sm
1.0Ba
0.5Sr
0.5Co
2.0O
5−d/Gd
0.1Ce
0.9O
1.9 (50:50 wt%) (SBSCO50) composite cathode is selected and used as the potential
in situ cathode for the interconnect-integrated SOFC. The
in situ sintering properties of a conventional LSM82/8YSZ(6:4) composite cathode is also studied as the reference material. The mechanical and electrochemical performance of the resulting interconnect-integrated cell is tested. The mechanical strengths of the anode-supported cell and the interconnect-integrated cell are compared, and the electrochemical properties of the interconnect-integrated button cell and the large area (50 mm × 50 mm) interconnect-integrated cell are investigated. The button cell of a SBSCO50 composite cathode exhibits a maximum power density of 0.57 W cm
−2 at 800 °C. The large area single repeat unit with an area of 50 mm × 50 mm with a SBSCO50
in situ cathode exhibits a maximum power output of 4.5 W at an operating temperature of 800 °C.</description><subject>Alternative fuels. Production and utilization</subject><subject>Applied sciences</subject><subject>Bonding</subject><subject>Buttons</subject><subject>Cathodes</subject><subject>Energy</subject><subject>Enlargement</subject><subject>Exact sciences and technology</subject><subject>Fuels</subject><subject>Hydrogen</subject><subject>Interconnect-integrated solid oxide fuel cell</subject><subject>Large area cell</subject><subject>Metal powders</subject><subject>Oxidation</subject><subject>Particulate composites</subject><subject>Power density</subject><subject>Sinter-joining</subject><subject>Solid oxide fuel cells</subject><issn>0360-3199</issn><issn>1879-3487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkctu2zAQRYkiBeqk_YWCmyIrOUPxqV2LoI8AAbJJN90QNDmyKciUS8pp8vel4CTbrIi5OMM7c4eQzwzWDJi6GtZx2D0FTLhuoYqgq27ekRUzumu4MPqMrIAraDjrug_kvJQBgGkQ3Yr8uUkzZj-lhH5uYi222c0YaJnGGOj0GAPS_ogj9TiO9F-cd3QXtzs64_6AFT1mpGXpy80wxRTTlh7y5LGUj-R978aCn57fC_L7x_f761_N7d3Pm-tvt40XQs-NDD4A98ywTgu12bRBcWgdKqU8F70UxkmupOg7Bn0rtQMP0G6w57I1Thl-QS5P_1bfv0css93HskzrEk7HYrsakqoLyzdJoyVwIRmrpDqRPk-lZOztIce9y0-WgV1St4N9Sd0uqVvQVV-G-fJs4Yp3Y59d8rG8drect0ZxVbmvJw5rMg8Rsy0-YvIYYq6XsGGKb1n9B8OBnBA</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Baek, Seung-Wook</creator><creator>Jeong, Jihoon</creator><creator>Kim, Jung Hyun</creator><creator>Lee, Changbo</creator><creator>Bae, Joongmyeon</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SP</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20101101</creationdate><title>Interconnect-integrated solid oxide fuel cell with high temperature sinter-joining process</title><author>Baek, Seung-Wook ; Jeong, Jihoon ; Kim, Jung Hyun ; Lee, Changbo ; Bae, Joongmyeon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-5dcd03c1819746bb2d6302ae666c34f548a53654f910f257a0c002bef3528a683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Alternative fuels. Production and utilization</topic><topic>Applied sciences</topic><topic>Bonding</topic><topic>Buttons</topic><topic>Cathodes</topic><topic>Energy</topic><topic>Enlargement</topic><topic>Exact sciences and technology</topic><topic>Fuels</topic><topic>Hydrogen</topic><topic>Interconnect-integrated solid oxide fuel cell</topic><topic>Large area cell</topic><topic>Metal powders</topic><topic>Oxidation</topic><topic>Particulate composites</topic><topic>Power density</topic><topic>Sinter-joining</topic><topic>Solid oxide fuel cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baek, Seung-Wook</creatorcontrib><creatorcontrib>Jeong, Jihoon</creatorcontrib><creatorcontrib>Kim, Jung Hyun</creatorcontrib><creatorcontrib>Lee, Changbo</creatorcontrib><creatorcontrib>Bae, Joongmyeon</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of hydrogen energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baek, Seung-Wook</au><au>Jeong, Jihoon</au><au>Kim, Jung Hyun</au><au>Lee, Changbo</au><au>Bae, Joongmyeon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interconnect-integrated solid oxide fuel cell with high temperature sinter-joining process</atitle><jtitle>International journal of hydrogen energy</jtitle><date>2010-11-01</date><risdate>2010</risdate><volume>35</volume><issue>21</issue><spage>11878</spage><epage>11889</epage><pages>11878-11889</pages><issn>0360-3199</issn><eissn>1879-3487</eissn><coden>IJHEDX</coden><abstract>In this study, a recently developed interconnect-integrated solid oxide fuel cell (SOFC) is characterized in terms of cell components, cell area enlargement, potential cathode material and mechanical/electrochemical properties. First, a high temperature sinter-joining process is used to fabricate an interconnect-integrated SOFC. This manuscript describes the interconnect material and the slurry composition design for bonding the interconnect and ceramic cell. The oxidation and thermal expansion characteristics of the starting materials of the interconnect-integrated cell, including the interconnect, metal powder of the bonding layer and metal powder/8YSZ/NiO compositions, are investigated to enhance both cell joining performance and cell stability during operation. Cell area enlargements of 50 mm × 50 mm and 100 mm × 100 mm are successfully realized using the optimized cell processing conditions. The cathode of the interconnect-integrated cell cannot be sintered in an air atmosphere due to the oxidation of the interconnect. Accordingly, a Sm
1.0Ba
0.5Sr
0.5Co
2.0O
5−d/Gd
0.1Ce
0.9O
1.9 (50:50 wt%) (SBSCO50) composite cathode is selected and used as the potential
in situ cathode for the interconnect-integrated SOFC. The
in situ sintering properties of a conventional LSM82/8YSZ(6:4) composite cathode is also studied as the reference material. The mechanical and electrochemical performance of the resulting interconnect-integrated cell is tested. The mechanical strengths of the anode-supported cell and the interconnect-integrated cell are compared, and the electrochemical properties of the interconnect-integrated button cell and the large area (50 mm × 50 mm) interconnect-integrated cell are investigated. The button cell of a SBSCO50 composite cathode exhibits a maximum power density of 0.57 W cm
−2 at 800 °C. The large area single repeat unit with an area of 50 mm × 50 mm with a SBSCO50
in situ cathode exhibits a maximum power output of 4.5 W at an operating temperature of 800 °C.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijhydene.2010.07.108</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-3199 |
ispartof | International journal of hydrogen energy, 2010-11, Vol.35 (21), p.11878-11889 |
issn | 0360-3199 1879-3487 |
language | eng |
recordid | cdi_proquest_miscellaneous_901660015 |
source | Elsevier ScienceDirect Journals |
subjects | Alternative fuels. Production and utilization Applied sciences Bonding Buttons Cathodes Energy Enlargement Exact sciences and technology Fuels Hydrogen Interconnect-integrated solid oxide fuel cell Large area cell Metal powders Oxidation Particulate composites Power density Sinter-joining Solid oxide fuel cells |
title | Interconnect-integrated solid oxide fuel cell with high temperature sinter-joining process |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T03%3A09%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interconnect-integrated%20solid%20oxide%20fuel%20cell%20with%20high%20temperature%20sinter-joining%20process&rft.jtitle=International%20journal%20of%20hydrogen%20energy&rft.au=Baek,%20Seung-Wook&rft.date=2010-11-01&rft.volume=35&rft.issue=21&rft.spage=11878&rft.epage=11889&rft.pages=11878-11889&rft.issn=0360-3199&rft.eissn=1879-3487&rft.coden=IJHEDX&rft_id=info:doi/10.1016/j.ijhydene.2010.07.108&rft_dat=%3Cproquest_cross%3E875034511%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=875034511&rft_id=info:pmid/&rft_els_id=S0360319910014965&rfr_iscdi=true |