Influence of polyurethane properties on mechanical performances of magnetorheological elastomers
Magnetorheological elastomers (MREs) are mainly composed of magnetizable particles and elastic polymer. The polymer matrix plays an important role in mechanical performances of MREs. In this study, the polyurethane (PU), which is synthesized by using toluene diisocyanate (TDI) and poly (propylene gl...
Gespeichert in:
Veröffentlicht in: | Journal of applied polymer science 2010-04, Vol.116 (2), p.771-778 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 778 |
---|---|
container_issue | 2 |
container_start_page | 771 |
container_title | Journal of applied polymer science |
container_volume | 116 |
creator | Wei, Bing Gong, Xinglong Jiang, Wanquan |
description | Magnetorheological elastomers (MREs) are mainly composed of magnetizable particles and elastic polymer. The polymer matrix plays an important role in mechanical performances of MREs. In this study, the polyurethane (PU), which is synthesized by using toluene diisocyanate (TDI) and poly (propylene glycol) (PPG-220), is selected as a matrix because it has better degradation stability than natural rubber and higher mechanical stability than silicone rubber. Four different MRE samples were fabricated by adjusting the reaction molar ratio of TDI to PPG to change the property of PU matrix. Structural characterization of the PU matrix was described by Fourier transform infrared analysis. The microstructures of samples were observed by using an environmental scanning electron microscope. The mechanical performances of samples, including shear modulus, magnetorheological effect (MR) effect, loss factor, and glass transition temperature (Tg), were characterized with dynamic mechanical analyzer. The results show that the shear modulus, the relative magnetic residual shear modulus and glass transition temperatures of samples increase with the increment of toluene diisocyanate, while the relative MR effects and loss factors decrease steadily. The experimental results indicate that optimal molar ratio (TDI : PPG) is 3 : 1. The field-induced shear modulus of sample with molar ratio 3 : 1 is 4.9 MPa, and the relative MR effect is 121% under an external magnetic field of 800 mT at room temperature. |
doi_str_mv | 10.1002/app.31474 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901659356</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>896233031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4624-7301b353d21bf79a0b8ec4716f74c2f93282de06d6997ac929bd3c19685a09733</originalsourceid><addsrcrecordid>eNqFkE9P3DAUxC1EpS6UQz8BuVQVh4D_JHZ8RKtCkdAWBKhH1-t9XgJOnNpZtfvt-yCUG-Jk6fk3o5kh5DOjx4xSfmKH4ViwSlU7ZMaoVmUlebNLZvjHykbr-iPZy_mBUsZqKmfk10XvwwZ6B0X0xRDDdpNgvLc9FEOKA6SxhVzEvujA4bV1NhR49TF1FkX5SdXZdQ9jTPcQQ1w_IxBsHmMHKX8iH7wNGQ5e3n1yd_btdv69vPxxfjE_vSwdJqxKJShbilqsOFt6pS1dNuAqxaRXleNeC97wFVC5klor6zTXy5VwTMumtlhTiH3ydfLF2L83kEfTtdlBCFglbrLRlMlai1q-SzZaciGoYEgeTaRLMecE3gyp7WzaGkbN09wG5zbPcyP75cXVZlzAJ5ynza8CzitsIDVyJxP3pw2wfdvQnF5d_XcuJ0WbR_j7qrDp0UglVG1-Ls7N4lrPrxfs1jTIH068t9HYdcIUdzecMlxY6bqiWvwDEDSnaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>896233031</pqid></control><display><type>article</type><title>Influence of polyurethane properties on mechanical performances of magnetorheological elastomers</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wei, Bing ; Gong, Xinglong ; Jiang, Wanquan</creator><creatorcontrib>Wei, Bing ; Gong, Xinglong ; Jiang, Wanquan</creatorcontrib><description>Magnetorheological elastomers (MREs) are mainly composed of magnetizable particles and elastic polymer. The polymer matrix plays an important role in mechanical performances of MREs. In this study, the polyurethane (PU), which is synthesized by using toluene diisocyanate (TDI) and poly (propylene glycol) (PPG-220), is selected as a matrix because it has better degradation stability than natural rubber and higher mechanical stability than silicone rubber. Four different MRE samples were fabricated by adjusting the reaction molar ratio of TDI to PPG to change the property of PU matrix. Structural characterization of the PU matrix was described by Fourier transform infrared analysis. The microstructures of samples were observed by using an environmental scanning electron microscope. The mechanical performances of samples, including shear modulus, magnetorheological effect (MR) effect, loss factor, and glass transition temperature (Tg), were characterized with dynamic mechanical analyzer. The results show that the shear modulus, the relative magnetic residual shear modulus and glass transition temperatures of samples increase with the increment of toluene diisocyanate, while the relative MR effects and loss factors decrease steadily. The experimental results indicate that optimal molar ratio (TDI : PPG) is 3 : 1. The field-induced shear modulus of sample with molar ratio 3 : 1 is 4.9 MPa, and the relative MR effect is 121% under an external magnetic field of 800 mT at room temperature.</description><identifier>ISSN: 0021-8995</identifier><identifier>ISSN: 1097-4628</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.31474</identifier><identifier>CODEN: JAPNAB</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Composites ; Elastomers ; Exact sciences and technology ; Forms of application and semi-finished materials ; Glass transition temperature ; Magnetic fields ; magnetorheological elastomers ; mechanical performances ; Polymer industry, paints, wood ; polyurethane (PU) ; Polyurethane resins ; Reproduction ; Scanning electron microscopy ; Shear modulus ; Stability ; Technology of polymers ; Toluene diisocyanates</subject><ispartof>Journal of applied polymer science, 2010-04, Vol.116 (2), p.771-778</ispartof><rights>Copyright © 2009 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4624-7301b353d21bf79a0b8ec4716f74c2f93282de06d6997ac929bd3c19685a09733</citedby><cites>FETCH-LOGICAL-c4624-7301b353d21bf79a0b8ec4716f74c2f93282de06d6997ac929bd3c19685a09733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fapp.31474$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fapp.31474$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22428269$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wei, Bing</creatorcontrib><creatorcontrib>Gong, Xinglong</creatorcontrib><creatorcontrib>Jiang, Wanquan</creatorcontrib><title>Influence of polyurethane properties on mechanical performances of magnetorheological elastomers</title><title>Journal of applied polymer science</title><addtitle>J. Appl. Polym. Sci</addtitle><description>Magnetorheological elastomers (MREs) are mainly composed of magnetizable particles and elastic polymer. The polymer matrix plays an important role in mechanical performances of MREs. In this study, the polyurethane (PU), which is synthesized by using toluene diisocyanate (TDI) and poly (propylene glycol) (PPG-220), is selected as a matrix because it has better degradation stability than natural rubber and higher mechanical stability than silicone rubber. Four different MRE samples were fabricated by adjusting the reaction molar ratio of TDI to PPG to change the property of PU matrix. Structural characterization of the PU matrix was described by Fourier transform infrared analysis. The microstructures of samples were observed by using an environmental scanning electron microscope. The mechanical performances of samples, including shear modulus, magnetorheological effect (MR) effect, loss factor, and glass transition temperature (Tg), were characterized with dynamic mechanical analyzer. The results show that the shear modulus, the relative magnetic residual shear modulus and glass transition temperatures of samples increase with the increment of toluene diisocyanate, while the relative MR effects and loss factors decrease steadily. The experimental results indicate that optimal molar ratio (TDI : PPG) is 3 : 1. The field-induced shear modulus of sample with molar ratio 3 : 1 is 4.9 MPa, and the relative MR effect is 121% under an external magnetic field of 800 mT at room temperature.</description><subject>Applied sciences</subject><subject>Composites</subject><subject>Elastomers</subject><subject>Exact sciences and technology</subject><subject>Forms of application and semi-finished materials</subject><subject>Glass transition temperature</subject><subject>Magnetic fields</subject><subject>magnetorheological elastomers</subject><subject>mechanical performances</subject><subject>Polymer industry, paints, wood</subject><subject>polyurethane (PU)</subject><subject>Polyurethane resins</subject><subject>Reproduction</subject><subject>Scanning electron microscopy</subject><subject>Shear modulus</subject><subject>Stability</subject><subject>Technology of polymers</subject><subject>Toluene diisocyanates</subject><issn>0021-8995</issn><issn>1097-4628</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkE9P3DAUxC1EpS6UQz8BuVQVh4D_JHZ8RKtCkdAWBKhH1-t9XgJOnNpZtfvt-yCUG-Jk6fk3o5kh5DOjx4xSfmKH4ViwSlU7ZMaoVmUlebNLZvjHykbr-iPZy_mBUsZqKmfk10XvwwZ6B0X0xRDDdpNgvLc9FEOKA6SxhVzEvujA4bV1NhR49TF1FkX5SdXZdQ9jTPcQQ1w_IxBsHmMHKX8iH7wNGQ5e3n1yd_btdv69vPxxfjE_vSwdJqxKJShbilqsOFt6pS1dNuAqxaRXleNeC97wFVC5klor6zTXy5VwTMumtlhTiH3ydfLF2L83kEfTtdlBCFglbrLRlMlai1q-SzZaciGoYEgeTaRLMecE3gyp7WzaGkbN09wG5zbPcyP75cXVZlzAJ5ynza8CzitsIDVyJxP3pw2wfdvQnF5d_XcuJ0WbR_j7qrDp0UglVG1-Ls7N4lrPrxfs1jTIH068t9HYdcIUdzecMlxY6bqiWvwDEDSnaQ</recordid><startdate>20100415</startdate><enddate>20100415</enddate><creator>Wei, Bing</creator><creator>Gong, Xinglong</creator><creator>Jiang, Wanquan</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20100415</creationdate><title>Influence of polyurethane properties on mechanical performances of magnetorheological elastomers</title><author>Wei, Bing ; Gong, Xinglong ; Jiang, Wanquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4624-7301b353d21bf79a0b8ec4716f74c2f93282de06d6997ac929bd3c19685a09733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Composites</topic><topic>Elastomers</topic><topic>Exact sciences and technology</topic><topic>Forms of application and semi-finished materials</topic><topic>Glass transition temperature</topic><topic>Magnetic fields</topic><topic>magnetorheological elastomers</topic><topic>mechanical performances</topic><topic>Polymer industry, paints, wood</topic><topic>polyurethane (PU)</topic><topic>Polyurethane resins</topic><topic>Reproduction</topic><topic>Scanning electron microscopy</topic><topic>Shear modulus</topic><topic>Stability</topic><topic>Technology of polymers</topic><topic>Toluene diisocyanates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Bing</creatorcontrib><creatorcontrib>Gong, Xinglong</creatorcontrib><creatorcontrib>Jiang, Wanquan</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Bing</au><au>Gong, Xinglong</au><au>Jiang, Wanquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of polyurethane properties on mechanical performances of magnetorheological elastomers</atitle><jtitle>Journal of applied polymer science</jtitle><addtitle>J. Appl. Polym. Sci</addtitle><date>2010-04-15</date><risdate>2010</risdate><volume>116</volume><issue>2</issue><spage>771</spage><epage>778</epage><pages>771-778</pages><issn>0021-8995</issn><issn>1097-4628</issn><eissn>1097-4628</eissn><coden>JAPNAB</coden><abstract>Magnetorheological elastomers (MREs) are mainly composed of magnetizable particles and elastic polymer. The polymer matrix plays an important role in mechanical performances of MREs. In this study, the polyurethane (PU), which is synthesized by using toluene diisocyanate (TDI) and poly (propylene glycol) (PPG-220), is selected as a matrix because it has better degradation stability than natural rubber and higher mechanical stability than silicone rubber. Four different MRE samples were fabricated by adjusting the reaction molar ratio of TDI to PPG to change the property of PU matrix. Structural characterization of the PU matrix was described by Fourier transform infrared analysis. The microstructures of samples were observed by using an environmental scanning electron microscope. The mechanical performances of samples, including shear modulus, magnetorheological effect (MR) effect, loss factor, and glass transition temperature (Tg), were characterized with dynamic mechanical analyzer. The results show that the shear modulus, the relative magnetic residual shear modulus and glass transition temperatures of samples increase with the increment of toluene diisocyanate, while the relative MR effects and loss factors decrease steadily. The experimental results indicate that optimal molar ratio (TDI : PPG) is 3 : 1. The field-induced shear modulus of sample with molar ratio 3 : 1 is 4.9 MPa, and the relative MR effect is 121% under an external magnetic field of 800 mT at room temperature.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/app.31474</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8995 |
ispartof | Journal of applied polymer science, 2010-04, Vol.116 (2), p.771-778 |
issn | 0021-8995 1097-4628 1097-4628 |
language | eng |
recordid | cdi_proquest_miscellaneous_901659356 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Applied sciences Composites Elastomers Exact sciences and technology Forms of application and semi-finished materials Glass transition temperature Magnetic fields magnetorheological elastomers mechanical performances Polymer industry, paints, wood polyurethane (PU) Polyurethane resins Reproduction Scanning electron microscopy Shear modulus Stability Technology of polymers Toluene diisocyanates |
title | Influence of polyurethane properties on mechanical performances of magnetorheological elastomers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T05%3A53%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20polyurethane%20properties%20on%20mechanical%20performances%20of%20magnetorheological%20elastomers&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Wei,%20Bing&rft.date=2010-04-15&rft.volume=116&rft.issue=2&rft.spage=771&rft.epage=778&rft.pages=771-778&rft.issn=0021-8995&rft.eissn=1097-4628&rft.coden=JAPNAB&rft_id=info:doi/10.1002/app.31474&rft_dat=%3Cproquest_cross%3E896233031%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=896233031&rft_id=info:pmid/&rfr_iscdi=true |