Hydrogen production from cellulose in a two-stage process combining fermentation and electrohydrogenesis

A two-stage dark-fermentation and electrohydrogenesis process was used to convert the recalcitrant lignocellulosic materials into hydrogen gas at high yields and rates. Fermentation using Clostridium thermocellum produced 1.67 mol H 2/mol-glucose at a rate of 0.25 L H 2/L-d with a corn stover lignoc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of Hydrogen Energy 2009-08, Vol.34 (15), p.6201-6210
Hauptverfasser: Lalaurette, Elodie, Thammannagowda, Shivegowda, Mohagheghi, Ali, Maness, Pin-Ching, Logan, Bruce E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6210
container_issue 15
container_start_page 6201
container_title International Journal of Hydrogen Energy
container_volume 34
creator Lalaurette, Elodie
Thammannagowda, Shivegowda
Mohagheghi, Ali
Maness, Pin-Ching
Logan, Bruce E.
description A two-stage dark-fermentation and electrohydrogenesis process was used to convert the recalcitrant lignocellulosic materials into hydrogen gas at high yields and rates. Fermentation using Clostridium thermocellum produced 1.67 mol H 2/mol-glucose at a rate of 0.25 L H 2/L-d with a corn stover lignocellulose feed, and 1.64 mol H 2/mol-glucose and 1.65 L H 2/L-d with a cellobiose feed. The lignocelluose and cellobiose fermentation effluent consisted primarily of: acetic, lactic, succinic, and formic acids and ethanol. An additional 800 ± 290 mL H 2/g-COD was produced from a synthetic effluent with a wastewater inoculum (fermentation effluent inoculum; FEI) by electrohydrogensis using microbial electrolysis cells (MECs). Hydrogen yields were increased to 980 ± 110 mL H 2/g-COD with the synthetic effluent by combining in the inoculum samples from multiple microbial fuel cells (MFCs) each pre-acclimated to a single substrate (single substrate inocula; SSI). Hydrogen yields and production rates with SSI and the actual fermentation effluents were 980 ± 110 mL/g-COD and 1.11 ± 0.13 L/L-d (synthetic); 900 ± 140 mL/g-COD and 0.96 ± 0.16 L/L-d (cellobiose); and 750 ± 180 mL/g-COD and 1.00 ± 0.19 L/L-d (lignocellulose). A maximum hydrogen production rate of 1.11 ± 0.13 L H 2/L reactor/d was produced with synthetic effluent. Energy efficiencies based on electricity needed for the MEC using SSI were 270 ± 20% for the synthetic effluent, 230 ± 50% for lignocellulose effluent and 220 ± 30% for the cellobiose effluent. COD removals were ∼90% for the synthetic effluents, and 70–85% based on VFA removal (65% COD removal) with the cellobiose and lignocellulose effluent. The overall hydrogen yield was 9.95 mol-H 2/mol-glucose for the cellobiose. These results show that pre-acclimation of MFCs to single substrates improves performance with a complex mixture of substrates, and that high hydrogen yields and gas production rates can be achieved using a two-stage fermentation and MEC process.
doi_str_mv 10.1016/j.ijhydene.2009.05.112
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_901658438</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360319909008490</els_id><sourcerecordid>1671396617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-b0c072e6655b88cf519c1f57574376ea4a29717e4e7b44315d5be9d777c45b533</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxS0EEkvpV0AWEoJLUjv-F99AFbRIlXqhZ8txJrteJXaxvVT77XHYpUc4zeX35s2bh9A7SlpKqLzat36_O44QoO0I0S0RLaXdC7ShvdIN4716iTaESdIwqvVr9CbnPSFUEa43aHd7HFPcQsCPKY4HV3wMeEpxwQ7m-TDHDNgHbHF5ik0udgsr6CBn7OIy-ODDFk-QFgjF_hHbMGKYwZUUd-fdkH1-i15Nds5weZ4X6OHb1x_Xt83d_c336y93jROElGYgjqgOpBRi6Hs3CaodnYQSijMlwXLbaUUVcFAD54yKUQygR6WU42IQjF2g96e9MRdvsvMF3M7FEOpFhhLFRNdX6OMJqll-HiAXs_i8BrYB4iEbXf8qes5W8tM_SSoVZVpKqioqT6hLMecEk3lMfrHpWG3N2pTZm79NmbUpQ4SpTVXhh7OHzc7OU7LB-fys7mjPtOh15T6fOKj_--UhrfEgOBh9WtON0f_P6jcn1K3V</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671396617</pqid></control><display><type>article</type><title>Hydrogen production from cellulose in a two-stage process combining fermentation and electrohydrogenesis</title><source>Elsevier ScienceDirect Journals</source><creator>Lalaurette, Elodie ; Thammannagowda, Shivegowda ; Mohagheghi, Ali ; Maness, Pin-Ching ; Logan, Bruce E.</creator><creatorcontrib>Lalaurette, Elodie ; Thammannagowda, Shivegowda ; Mohagheghi, Ali ; Maness, Pin-Ching ; Logan, Bruce E. ; National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><description>A two-stage dark-fermentation and electrohydrogenesis process was used to convert the recalcitrant lignocellulosic materials into hydrogen gas at high yields and rates. Fermentation using Clostridium thermocellum produced 1.67 mol H 2/mol-glucose at a rate of 0.25 L H 2/L-d with a corn stover lignocellulose feed, and 1.64 mol H 2/mol-glucose and 1.65 L H 2/L-d with a cellobiose feed. The lignocelluose and cellobiose fermentation effluent consisted primarily of: acetic, lactic, succinic, and formic acids and ethanol. An additional 800 ± 290 mL H 2/g-COD was produced from a synthetic effluent with a wastewater inoculum (fermentation effluent inoculum; FEI) by electrohydrogensis using microbial electrolysis cells (MECs). Hydrogen yields were increased to 980 ± 110 mL H 2/g-COD with the synthetic effluent by combining in the inoculum samples from multiple microbial fuel cells (MFCs) each pre-acclimated to a single substrate (single substrate inocula; SSI). Hydrogen yields and production rates with SSI and the actual fermentation effluents were 980 ± 110 mL/g-COD and 1.11 ± 0.13 L/L-d (synthetic); 900 ± 140 mL/g-COD and 0.96 ± 0.16 L/L-d (cellobiose); and 750 ± 180 mL/g-COD and 1.00 ± 0.19 L/L-d (lignocellulose). A maximum hydrogen production rate of 1.11 ± 0.13 L H 2/L reactor/d was produced with synthetic effluent. Energy efficiencies based on electricity needed for the MEC using SSI were 270 ± 20% for the synthetic effluent, 230 ± 50% for lignocellulose effluent and 220 ± 30% for the cellobiose effluent. COD removals were ∼90% for the synthetic effluents, and 70–85% based on VFA removal (65% COD removal) with the cellobiose and lignocellulose effluent. The overall hydrogen yield was 9.95 mol-H 2/mol-glucose for the cellobiose. These results show that pre-acclimation of MFCs to single substrates improves performance with a complex mixture of substrates, and that high hydrogen yields and gas production rates can be achieved using a two-stage fermentation and MEC process.</description><identifier>ISSN: 0360-3199</identifier><identifier>EISSN: 1879-3487</identifier><identifier>DOI: 10.1016/j.ijhydene.2009.05.112</identifier><identifier>CODEN: IJHEDX</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>08 HYDROGEN ; Alternative fuels. Production and utilization ; Applied sciences ; BASIC BIOLOGICAL SCIENCES ; Bioenergy ; Biohydrogen ; Chemical and Biosciences ; Crack opening displacement ; Effluents ; Electrolysis cell ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Ethyl alcohol ; Exact sciences and technology ; Fermentation ; Fuel cells ; Fuels ; Hydrogen ; Hydrogen production ; Inoculum ; Lignocellulose ; Microbial ; Microorganisms</subject><ispartof>International Journal of Hydrogen Energy, 2009-08, Vol.34 (15), p.6201-6210</ispartof><rights>2009 International Association for Hydrogen Energy</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-b0c072e6655b88cf519c1f57574376ea4a29717e4e7b44315d5be9d777c45b533</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0360319909008490$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21839589$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1073528$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lalaurette, Elodie</creatorcontrib><creatorcontrib>Thammannagowda, Shivegowda</creatorcontrib><creatorcontrib>Mohagheghi, Ali</creatorcontrib><creatorcontrib>Maness, Pin-Ching</creatorcontrib><creatorcontrib>Logan, Bruce E.</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><title>Hydrogen production from cellulose in a two-stage process combining fermentation and electrohydrogenesis</title><title>International Journal of Hydrogen Energy</title><description>A two-stage dark-fermentation and electrohydrogenesis process was used to convert the recalcitrant lignocellulosic materials into hydrogen gas at high yields and rates. Fermentation using Clostridium thermocellum produced 1.67 mol H 2/mol-glucose at a rate of 0.25 L H 2/L-d with a corn stover lignocellulose feed, and 1.64 mol H 2/mol-glucose and 1.65 L H 2/L-d with a cellobiose feed. The lignocelluose and cellobiose fermentation effluent consisted primarily of: acetic, lactic, succinic, and formic acids and ethanol. An additional 800 ± 290 mL H 2/g-COD was produced from a synthetic effluent with a wastewater inoculum (fermentation effluent inoculum; FEI) by electrohydrogensis using microbial electrolysis cells (MECs). Hydrogen yields were increased to 980 ± 110 mL H 2/g-COD with the synthetic effluent by combining in the inoculum samples from multiple microbial fuel cells (MFCs) each pre-acclimated to a single substrate (single substrate inocula; SSI). Hydrogen yields and production rates with SSI and the actual fermentation effluents were 980 ± 110 mL/g-COD and 1.11 ± 0.13 L/L-d (synthetic); 900 ± 140 mL/g-COD and 0.96 ± 0.16 L/L-d (cellobiose); and 750 ± 180 mL/g-COD and 1.00 ± 0.19 L/L-d (lignocellulose). A maximum hydrogen production rate of 1.11 ± 0.13 L H 2/L reactor/d was produced with synthetic effluent. Energy efficiencies based on electricity needed for the MEC using SSI were 270 ± 20% for the synthetic effluent, 230 ± 50% for lignocellulose effluent and 220 ± 30% for the cellobiose effluent. COD removals were ∼90% for the synthetic effluents, and 70–85% based on VFA removal (65% COD removal) with the cellobiose and lignocellulose effluent. The overall hydrogen yield was 9.95 mol-H 2/mol-glucose for the cellobiose. These results show that pre-acclimation of MFCs to single substrates improves performance with a complex mixture of substrates, and that high hydrogen yields and gas production rates can be achieved using a two-stage fermentation and MEC process.</description><subject>08 HYDROGEN</subject><subject>Alternative fuels. Production and utilization</subject><subject>Applied sciences</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Bioenergy</subject><subject>Biohydrogen</subject><subject>Chemical and Biosciences</subject><subject>Crack opening displacement</subject><subject>Effluents</subject><subject>Electrolysis cell</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Ethyl alcohol</subject><subject>Exact sciences and technology</subject><subject>Fermentation</subject><subject>Fuel cells</subject><subject>Fuels</subject><subject>Hydrogen</subject><subject>Hydrogen production</subject><subject>Inoculum</subject><subject>Lignocellulose</subject><subject>Microbial</subject><subject>Microorganisms</subject><issn>0360-3199</issn><issn>1879-3487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkU9v1DAQxS0EEkvpV0AWEoJLUjv-F99AFbRIlXqhZ8txJrteJXaxvVT77XHYpUc4zeX35s2bh9A7SlpKqLzat36_O44QoO0I0S0RLaXdC7ShvdIN4716iTaESdIwqvVr9CbnPSFUEa43aHd7HFPcQsCPKY4HV3wMeEpxwQ7m-TDHDNgHbHF5ik0udgsr6CBn7OIy-ODDFk-QFgjF_hHbMGKYwZUUd-fdkH1-i15Nds5weZ4X6OHb1x_Xt83d_c336y93jROElGYgjqgOpBRi6Hs3CaodnYQSijMlwXLbaUUVcFAD54yKUQygR6WU42IQjF2g96e9MRdvsvMF3M7FEOpFhhLFRNdX6OMJqll-HiAXs_i8BrYB4iEbXf8qes5W8tM_SSoVZVpKqioqT6hLMecEk3lMfrHpWG3N2pTZm79NmbUpQ4SpTVXhh7OHzc7OU7LB-fys7mjPtOh15T6fOKj_--UhrfEgOBh9WtON0f_P6jcn1K3V</recordid><startdate>20090801</startdate><enddate>20090801</enddate><creator>Lalaurette, Elodie</creator><creator>Thammannagowda, Shivegowda</creator><creator>Mohagheghi, Ali</creator><creator>Maness, Pin-Ching</creator><creator>Logan, Bruce E.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20090801</creationdate><title>Hydrogen production from cellulose in a two-stage process combining fermentation and electrohydrogenesis</title><author>Lalaurette, Elodie ; Thammannagowda, Shivegowda ; Mohagheghi, Ali ; Maness, Pin-Ching ; Logan, Bruce E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-b0c072e6655b88cf519c1f57574376ea4a29717e4e7b44315d5be9d777c45b533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>08 HYDROGEN</topic><topic>Alternative fuels. Production and utilization</topic><topic>Applied sciences</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Bioenergy</topic><topic>Biohydrogen</topic><topic>Chemical and Biosciences</topic><topic>Crack opening displacement</topic><topic>Effluents</topic><topic>Electrolysis cell</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Ethyl alcohol</topic><topic>Exact sciences and technology</topic><topic>Fermentation</topic><topic>Fuel cells</topic><topic>Fuels</topic><topic>Hydrogen</topic><topic>Hydrogen production</topic><topic>Inoculum</topic><topic>Lignocellulose</topic><topic>Microbial</topic><topic>Microorganisms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lalaurette, Elodie</creatorcontrib><creatorcontrib>Thammannagowda, Shivegowda</creatorcontrib><creatorcontrib>Mohagheghi, Ali</creatorcontrib><creatorcontrib>Maness, Pin-Ching</creatorcontrib><creatorcontrib>Logan, Bruce E.</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>International Journal of Hydrogen Energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lalaurette, Elodie</au><au>Thammannagowda, Shivegowda</au><au>Mohagheghi, Ali</au><au>Maness, Pin-Ching</au><au>Logan, Bruce E.</au><aucorp>National Renewable Energy Lab. (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogen production from cellulose in a two-stage process combining fermentation and electrohydrogenesis</atitle><jtitle>International Journal of Hydrogen Energy</jtitle><date>2009-08-01</date><risdate>2009</risdate><volume>34</volume><issue>15</issue><spage>6201</spage><epage>6210</epage><pages>6201-6210</pages><issn>0360-3199</issn><eissn>1879-3487</eissn><coden>IJHEDX</coden><abstract>A two-stage dark-fermentation and electrohydrogenesis process was used to convert the recalcitrant lignocellulosic materials into hydrogen gas at high yields and rates. Fermentation using Clostridium thermocellum produced 1.67 mol H 2/mol-glucose at a rate of 0.25 L H 2/L-d with a corn stover lignocellulose feed, and 1.64 mol H 2/mol-glucose and 1.65 L H 2/L-d with a cellobiose feed. The lignocelluose and cellobiose fermentation effluent consisted primarily of: acetic, lactic, succinic, and formic acids and ethanol. An additional 800 ± 290 mL H 2/g-COD was produced from a synthetic effluent with a wastewater inoculum (fermentation effluent inoculum; FEI) by electrohydrogensis using microbial electrolysis cells (MECs). Hydrogen yields were increased to 980 ± 110 mL H 2/g-COD with the synthetic effluent by combining in the inoculum samples from multiple microbial fuel cells (MFCs) each pre-acclimated to a single substrate (single substrate inocula; SSI). Hydrogen yields and production rates with SSI and the actual fermentation effluents were 980 ± 110 mL/g-COD and 1.11 ± 0.13 L/L-d (synthetic); 900 ± 140 mL/g-COD and 0.96 ± 0.16 L/L-d (cellobiose); and 750 ± 180 mL/g-COD and 1.00 ± 0.19 L/L-d (lignocellulose). A maximum hydrogen production rate of 1.11 ± 0.13 L H 2/L reactor/d was produced with synthetic effluent. Energy efficiencies based on electricity needed for the MEC using SSI were 270 ± 20% for the synthetic effluent, 230 ± 50% for lignocellulose effluent and 220 ± 30% for the cellobiose effluent. COD removals were ∼90% for the synthetic effluents, and 70–85% based on VFA removal (65% COD removal) with the cellobiose and lignocellulose effluent. The overall hydrogen yield was 9.95 mol-H 2/mol-glucose for the cellobiose. These results show that pre-acclimation of MFCs to single substrates improves performance with a complex mixture of substrates, and that high hydrogen yields and gas production rates can be achieved using a two-stage fermentation and MEC process.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijhydene.2009.05.112</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0360-3199
ispartof International Journal of Hydrogen Energy, 2009-08, Vol.34 (15), p.6201-6210
issn 0360-3199
1879-3487
language eng
recordid cdi_proquest_miscellaneous_901658438
source Elsevier ScienceDirect Journals
subjects 08 HYDROGEN
Alternative fuels. Production and utilization
Applied sciences
BASIC BIOLOGICAL SCIENCES
Bioenergy
Biohydrogen
Chemical and Biosciences
Crack opening displacement
Effluents
Electrolysis cell
Energy
Energy. Thermal use of fuels
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Ethyl alcohol
Exact sciences and technology
Fermentation
Fuel cells
Fuels
Hydrogen
Hydrogen production
Inoculum
Lignocellulose
Microbial
Microorganisms
title Hydrogen production from cellulose in a two-stage process combining fermentation and electrohydrogenesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T05%3A38%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogen%20production%20from%20cellulose%20in%20a%20two-stage%20process%20combining%20fermentation%20and%20electrohydrogenesis&rft.jtitle=International%20Journal%20of%20Hydrogen%20Energy&rft.au=Lalaurette,%20Elodie&rft.aucorp=National%20Renewable%20Energy%20Lab.%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2009-08-01&rft.volume=34&rft.issue=15&rft.spage=6201&rft.epage=6210&rft.pages=6201-6210&rft.issn=0360-3199&rft.eissn=1879-3487&rft.coden=IJHEDX&rft_id=info:doi/10.1016/j.ijhydene.2009.05.112&rft_dat=%3Cproquest_osti_%3E1671396617%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671396617&rft_id=info:pmid/&rft_els_id=S0360319909008490&rfr_iscdi=true