Hydrogen production from cellulose in a two-stage process combining fermentation and electrohydrogenesis
A two-stage dark-fermentation and electrohydrogenesis process was used to convert the recalcitrant lignocellulosic materials into hydrogen gas at high yields and rates. Fermentation using Clostridium thermocellum produced 1.67 mol H 2/mol-glucose at a rate of 0.25 L H 2/L-d with a corn stover lignoc...
Gespeichert in:
Veröffentlicht in: | International Journal of Hydrogen Energy 2009-08, Vol.34 (15), p.6201-6210 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6210 |
---|---|
container_issue | 15 |
container_start_page | 6201 |
container_title | International Journal of Hydrogen Energy |
container_volume | 34 |
creator | Lalaurette, Elodie Thammannagowda, Shivegowda Mohagheghi, Ali Maness, Pin-Ching Logan, Bruce E. |
description | A two-stage dark-fermentation and electrohydrogenesis process was used to convert the recalcitrant lignocellulosic materials into hydrogen gas at high yields and rates. Fermentation using
Clostridium thermocellum produced 1.67
mol H
2/mol-glucose at a rate of 0.25
L H
2/L-d with a corn stover lignocellulose feed, and 1.64
mol H
2/mol-glucose and 1.65
L H
2/L-d with a cellobiose feed. The lignocelluose and cellobiose fermentation effluent consisted primarily of: acetic, lactic, succinic, and formic acids and ethanol. An additional 800
±
290
mL H
2/g-COD was produced from a synthetic effluent with a wastewater inoculum (fermentation effluent inoculum; FEI) by electrohydrogensis using microbial electrolysis cells (MECs). Hydrogen yields were increased to 980
±
110
mL H
2/g-COD with the synthetic effluent by combining in the inoculum samples from multiple microbial fuel cells (MFCs) each pre-acclimated to a single substrate (single substrate inocula; SSI). Hydrogen yields and production rates with SSI and the actual fermentation effluents were 980
±
110
mL/g-COD and 1.11
±
0.13 L/L-d (synthetic); 900
±
140
mL/g-COD and 0.96
±
0.16 L/L-d (cellobiose); and 750
±
180
mL/g-COD and 1.00
±
0.19 L/L-d (lignocellulose). A maximum hydrogen production rate of 1.11
±
0.13 L H
2/L reactor/d was produced with synthetic effluent. Energy efficiencies based on electricity needed for the MEC using SSI were 270
±
20% for the synthetic effluent, 230
±
50% for lignocellulose effluent and 220
±
30% for the cellobiose effluent. COD removals were ∼90% for the synthetic effluents, and 70–85% based on VFA removal (65% COD removal) with the cellobiose and lignocellulose effluent. The overall hydrogen yield was 9.95
mol-H
2/mol-glucose for the cellobiose. These results show that pre-acclimation of MFCs to single substrates improves performance with a complex mixture of substrates, and that high hydrogen yields and gas production rates can be achieved using a two-stage fermentation and MEC process. |
doi_str_mv | 10.1016/j.ijhydene.2009.05.112 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_901658438</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360319909008490</els_id><sourcerecordid>1671396617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-b0c072e6655b88cf519c1f57574376ea4a29717e4e7b44315d5be9d777c45b533</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxS0EEkvpV0AWEoJLUjv-F99AFbRIlXqhZ8txJrteJXaxvVT77XHYpUc4zeX35s2bh9A7SlpKqLzat36_O44QoO0I0S0RLaXdC7ShvdIN4716iTaESdIwqvVr9CbnPSFUEa43aHd7HFPcQsCPKY4HV3wMeEpxwQ7m-TDHDNgHbHF5ik0udgsr6CBn7OIy-ODDFk-QFgjF_hHbMGKYwZUUd-fdkH1-i15Nds5weZ4X6OHb1x_Xt83d_c336y93jROElGYgjqgOpBRi6Hs3CaodnYQSijMlwXLbaUUVcFAD54yKUQygR6WU42IQjF2g96e9MRdvsvMF3M7FEOpFhhLFRNdX6OMJqll-HiAXs_i8BrYB4iEbXf8qes5W8tM_SSoVZVpKqioqT6hLMecEk3lMfrHpWG3N2pTZm79NmbUpQ4SpTVXhh7OHzc7OU7LB-fys7mjPtOh15T6fOKj_--UhrfEgOBh9WtON0f_P6jcn1K3V</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671396617</pqid></control><display><type>article</type><title>Hydrogen production from cellulose in a two-stage process combining fermentation and electrohydrogenesis</title><source>Elsevier ScienceDirect Journals</source><creator>Lalaurette, Elodie ; Thammannagowda, Shivegowda ; Mohagheghi, Ali ; Maness, Pin-Ching ; Logan, Bruce E.</creator><creatorcontrib>Lalaurette, Elodie ; Thammannagowda, Shivegowda ; Mohagheghi, Ali ; Maness, Pin-Ching ; Logan, Bruce E. ; National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><description>A two-stage dark-fermentation and electrohydrogenesis process was used to convert the recalcitrant lignocellulosic materials into hydrogen gas at high yields and rates. Fermentation using
Clostridium thermocellum produced 1.67
mol H
2/mol-glucose at a rate of 0.25
L H
2/L-d with a corn stover lignocellulose feed, and 1.64
mol H
2/mol-glucose and 1.65
L H
2/L-d with a cellobiose feed. The lignocelluose and cellobiose fermentation effluent consisted primarily of: acetic, lactic, succinic, and formic acids and ethanol. An additional 800
±
290
mL H
2/g-COD was produced from a synthetic effluent with a wastewater inoculum (fermentation effluent inoculum; FEI) by electrohydrogensis using microbial electrolysis cells (MECs). Hydrogen yields were increased to 980
±
110
mL H
2/g-COD with the synthetic effluent by combining in the inoculum samples from multiple microbial fuel cells (MFCs) each pre-acclimated to a single substrate (single substrate inocula; SSI). Hydrogen yields and production rates with SSI and the actual fermentation effluents were 980
±
110
mL/g-COD and 1.11
±
0.13 L/L-d (synthetic); 900
±
140
mL/g-COD and 0.96
±
0.16 L/L-d (cellobiose); and 750
±
180
mL/g-COD and 1.00
±
0.19 L/L-d (lignocellulose). A maximum hydrogen production rate of 1.11
±
0.13 L H
2/L reactor/d was produced with synthetic effluent. Energy efficiencies based on electricity needed for the MEC using SSI were 270
±
20% for the synthetic effluent, 230
±
50% for lignocellulose effluent and 220
±
30% for the cellobiose effluent. COD removals were ∼90% for the synthetic effluents, and 70–85% based on VFA removal (65% COD removal) with the cellobiose and lignocellulose effluent. The overall hydrogen yield was 9.95
mol-H
2/mol-glucose for the cellobiose. These results show that pre-acclimation of MFCs to single substrates improves performance with a complex mixture of substrates, and that high hydrogen yields and gas production rates can be achieved using a two-stage fermentation and MEC process.</description><identifier>ISSN: 0360-3199</identifier><identifier>EISSN: 1879-3487</identifier><identifier>DOI: 10.1016/j.ijhydene.2009.05.112</identifier><identifier>CODEN: IJHEDX</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>08 HYDROGEN ; Alternative fuels. Production and utilization ; Applied sciences ; BASIC BIOLOGICAL SCIENCES ; Bioenergy ; Biohydrogen ; Chemical and Biosciences ; Crack opening displacement ; Effluents ; Electrolysis cell ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Ethyl alcohol ; Exact sciences and technology ; Fermentation ; Fuel cells ; Fuels ; Hydrogen ; Hydrogen production ; Inoculum ; Lignocellulose ; Microbial ; Microorganisms</subject><ispartof>International Journal of Hydrogen Energy, 2009-08, Vol.34 (15), p.6201-6210</ispartof><rights>2009 International Association for Hydrogen Energy</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-b0c072e6655b88cf519c1f57574376ea4a29717e4e7b44315d5be9d777c45b533</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0360319909008490$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21839589$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1073528$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lalaurette, Elodie</creatorcontrib><creatorcontrib>Thammannagowda, Shivegowda</creatorcontrib><creatorcontrib>Mohagheghi, Ali</creatorcontrib><creatorcontrib>Maness, Pin-Ching</creatorcontrib><creatorcontrib>Logan, Bruce E.</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><title>Hydrogen production from cellulose in a two-stage process combining fermentation and electrohydrogenesis</title><title>International Journal of Hydrogen Energy</title><description>A two-stage dark-fermentation and electrohydrogenesis process was used to convert the recalcitrant lignocellulosic materials into hydrogen gas at high yields and rates. Fermentation using
Clostridium thermocellum produced 1.67
mol H
2/mol-glucose at a rate of 0.25
L H
2/L-d with a corn stover lignocellulose feed, and 1.64
mol H
2/mol-glucose and 1.65
L H
2/L-d with a cellobiose feed. The lignocelluose and cellobiose fermentation effluent consisted primarily of: acetic, lactic, succinic, and formic acids and ethanol. An additional 800
±
290
mL H
2/g-COD was produced from a synthetic effluent with a wastewater inoculum (fermentation effluent inoculum; FEI) by electrohydrogensis using microbial electrolysis cells (MECs). Hydrogen yields were increased to 980
±
110
mL H
2/g-COD with the synthetic effluent by combining in the inoculum samples from multiple microbial fuel cells (MFCs) each pre-acclimated to a single substrate (single substrate inocula; SSI). Hydrogen yields and production rates with SSI and the actual fermentation effluents were 980
±
110
mL/g-COD and 1.11
±
0.13 L/L-d (synthetic); 900
±
140
mL/g-COD and 0.96
±
0.16 L/L-d (cellobiose); and 750
±
180
mL/g-COD and 1.00
±
0.19 L/L-d (lignocellulose). A maximum hydrogen production rate of 1.11
±
0.13 L H
2/L reactor/d was produced with synthetic effluent. Energy efficiencies based on electricity needed for the MEC using SSI were 270
±
20% for the synthetic effluent, 230
±
50% for lignocellulose effluent and 220
±
30% for the cellobiose effluent. COD removals were ∼90% for the synthetic effluents, and 70–85% based on VFA removal (65% COD removal) with the cellobiose and lignocellulose effluent. The overall hydrogen yield was 9.95
mol-H
2/mol-glucose for the cellobiose. These results show that pre-acclimation of MFCs to single substrates improves performance with a complex mixture of substrates, and that high hydrogen yields and gas production rates can be achieved using a two-stage fermentation and MEC process.</description><subject>08 HYDROGEN</subject><subject>Alternative fuels. Production and utilization</subject><subject>Applied sciences</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Bioenergy</subject><subject>Biohydrogen</subject><subject>Chemical and Biosciences</subject><subject>Crack opening displacement</subject><subject>Effluents</subject><subject>Electrolysis cell</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Ethyl alcohol</subject><subject>Exact sciences and technology</subject><subject>Fermentation</subject><subject>Fuel cells</subject><subject>Fuels</subject><subject>Hydrogen</subject><subject>Hydrogen production</subject><subject>Inoculum</subject><subject>Lignocellulose</subject><subject>Microbial</subject><subject>Microorganisms</subject><issn>0360-3199</issn><issn>1879-3487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkU9v1DAQxS0EEkvpV0AWEoJLUjv-F99AFbRIlXqhZ8txJrteJXaxvVT77XHYpUc4zeX35s2bh9A7SlpKqLzat36_O44QoO0I0S0RLaXdC7ShvdIN4716iTaESdIwqvVr9CbnPSFUEa43aHd7HFPcQsCPKY4HV3wMeEpxwQ7m-TDHDNgHbHF5ik0udgsr6CBn7OIy-ODDFk-QFgjF_hHbMGKYwZUUd-fdkH1-i15Nds5weZ4X6OHb1x_Xt83d_c336y93jROElGYgjqgOpBRi6Hs3CaodnYQSijMlwXLbaUUVcFAD54yKUQygR6WU42IQjF2g96e9MRdvsvMF3M7FEOpFhhLFRNdX6OMJqll-HiAXs_i8BrYB4iEbXf8qes5W8tM_SSoVZVpKqioqT6hLMecEk3lMfrHpWG3N2pTZm79NmbUpQ4SpTVXhh7OHzc7OU7LB-fys7mjPtOh15T6fOKj_--UhrfEgOBh9WtON0f_P6jcn1K3V</recordid><startdate>20090801</startdate><enddate>20090801</enddate><creator>Lalaurette, Elodie</creator><creator>Thammannagowda, Shivegowda</creator><creator>Mohagheghi, Ali</creator><creator>Maness, Pin-Ching</creator><creator>Logan, Bruce E.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20090801</creationdate><title>Hydrogen production from cellulose in a two-stage process combining fermentation and electrohydrogenesis</title><author>Lalaurette, Elodie ; Thammannagowda, Shivegowda ; Mohagheghi, Ali ; Maness, Pin-Ching ; Logan, Bruce E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-b0c072e6655b88cf519c1f57574376ea4a29717e4e7b44315d5be9d777c45b533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>08 HYDROGEN</topic><topic>Alternative fuels. Production and utilization</topic><topic>Applied sciences</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Bioenergy</topic><topic>Biohydrogen</topic><topic>Chemical and Biosciences</topic><topic>Crack opening displacement</topic><topic>Effluents</topic><topic>Electrolysis cell</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Ethyl alcohol</topic><topic>Exact sciences and technology</topic><topic>Fermentation</topic><topic>Fuel cells</topic><topic>Fuels</topic><topic>Hydrogen</topic><topic>Hydrogen production</topic><topic>Inoculum</topic><topic>Lignocellulose</topic><topic>Microbial</topic><topic>Microorganisms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lalaurette, Elodie</creatorcontrib><creatorcontrib>Thammannagowda, Shivegowda</creatorcontrib><creatorcontrib>Mohagheghi, Ali</creatorcontrib><creatorcontrib>Maness, Pin-Ching</creatorcontrib><creatorcontrib>Logan, Bruce E.</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>International Journal of Hydrogen Energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lalaurette, Elodie</au><au>Thammannagowda, Shivegowda</au><au>Mohagheghi, Ali</au><au>Maness, Pin-Ching</au><au>Logan, Bruce E.</au><aucorp>National Renewable Energy Lab. (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogen production from cellulose in a two-stage process combining fermentation and electrohydrogenesis</atitle><jtitle>International Journal of Hydrogen Energy</jtitle><date>2009-08-01</date><risdate>2009</risdate><volume>34</volume><issue>15</issue><spage>6201</spage><epage>6210</epage><pages>6201-6210</pages><issn>0360-3199</issn><eissn>1879-3487</eissn><coden>IJHEDX</coden><abstract>A two-stage dark-fermentation and electrohydrogenesis process was used to convert the recalcitrant lignocellulosic materials into hydrogen gas at high yields and rates. Fermentation using
Clostridium thermocellum produced 1.67
mol H
2/mol-glucose at a rate of 0.25
L H
2/L-d with a corn stover lignocellulose feed, and 1.64
mol H
2/mol-glucose and 1.65
L H
2/L-d with a cellobiose feed. The lignocelluose and cellobiose fermentation effluent consisted primarily of: acetic, lactic, succinic, and formic acids and ethanol. An additional 800
±
290
mL H
2/g-COD was produced from a synthetic effluent with a wastewater inoculum (fermentation effluent inoculum; FEI) by electrohydrogensis using microbial electrolysis cells (MECs). Hydrogen yields were increased to 980
±
110
mL H
2/g-COD with the synthetic effluent by combining in the inoculum samples from multiple microbial fuel cells (MFCs) each pre-acclimated to a single substrate (single substrate inocula; SSI). Hydrogen yields and production rates with SSI and the actual fermentation effluents were 980
±
110
mL/g-COD and 1.11
±
0.13 L/L-d (synthetic); 900
±
140
mL/g-COD and 0.96
±
0.16 L/L-d (cellobiose); and 750
±
180
mL/g-COD and 1.00
±
0.19 L/L-d (lignocellulose). A maximum hydrogen production rate of 1.11
±
0.13 L H
2/L reactor/d was produced with synthetic effluent. Energy efficiencies based on electricity needed for the MEC using SSI were 270
±
20% for the synthetic effluent, 230
±
50% for lignocellulose effluent and 220
±
30% for the cellobiose effluent. COD removals were ∼90% for the synthetic effluents, and 70–85% based on VFA removal (65% COD removal) with the cellobiose and lignocellulose effluent. The overall hydrogen yield was 9.95
mol-H
2/mol-glucose for the cellobiose. These results show that pre-acclimation of MFCs to single substrates improves performance with a complex mixture of substrates, and that high hydrogen yields and gas production rates can be achieved using a two-stage fermentation and MEC process.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijhydene.2009.05.112</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-3199 |
ispartof | International Journal of Hydrogen Energy, 2009-08, Vol.34 (15), p.6201-6210 |
issn | 0360-3199 1879-3487 |
language | eng |
recordid | cdi_proquest_miscellaneous_901658438 |
source | Elsevier ScienceDirect Journals |
subjects | 08 HYDROGEN Alternative fuels. Production and utilization Applied sciences BASIC BIOLOGICAL SCIENCES Bioenergy Biohydrogen Chemical and Biosciences Crack opening displacement Effluents Electrolysis cell Energy Energy. Thermal use of fuels Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Ethyl alcohol Exact sciences and technology Fermentation Fuel cells Fuels Hydrogen Hydrogen production Inoculum Lignocellulose Microbial Microorganisms |
title | Hydrogen production from cellulose in a two-stage process combining fermentation and electrohydrogenesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T05%3A38%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogen%20production%20from%20cellulose%20in%20a%20two-stage%20process%20combining%20fermentation%20and%20electrohydrogenesis&rft.jtitle=International%20Journal%20of%20Hydrogen%20Energy&rft.au=Lalaurette,%20Elodie&rft.aucorp=National%20Renewable%20Energy%20Lab.%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2009-08-01&rft.volume=34&rft.issue=15&rft.spage=6201&rft.epage=6210&rft.pages=6201-6210&rft.issn=0360-3199&rft.eissn=1879-3487&rft.coden=IJHEDX&rft_id=info:doi/10.1016/j.ijhydene.2009.05.112&rft_dat=%3Cproquest_osti_%3E1671396617%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671396617&rft_id=info:pmid/&rft_els_id=S0360319909008490&rfr_iscdi=true |