Predicting cohesive failure in thermosets

Modeling of stresses in epoxies used as adhesives, coatings, or encapsulants in electronic packaging can guide an engineer to more robust designs and material selections. However, stresses by themselves allow evaluation of qualitative trends only. Quantitative assessment of design margins requires s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2011-02, Vol.119 (4), p.2143-2152
Hauptverfasser: Adolf, Douglas B., Chambers, Robert S., Elisberg, Brenton, Stavig, Mark, Ruff, Mary
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2152
container_issue 4
container_start_page 2143
container_title Journal of applied polymer science
container_volume 119
creator Adolf, Douglas B.
Chambers, Robert S.
Elisberg, Brenton
Stavig, Mark
Ruff, Mary
description Modeling of stresses in epoxies used as adhesives, coatings, or encapsulants in electronic packaging can guide an engineer to more robust designs and material selections. However, stresses by themselves allow evaluation of qualitative trends only. Quantitative assessment of design margins requires some knowledge of when stresses become excessive and failure is imminent. In this study, stresses were predicted accurately in a wide variety of tests, and the state of stress and strain was examined at the point of experimental failure to extract a single scalar metric that design engineers could use to correlate with the observed initiation of cracking. A value of the maximum principal strain of roughly 40% satisfactorily matched data encompassing different geometries, modes of deformation, and test temperature and is apparently linked to a physical mechanism of failure arising from “run‐away” nonlinear viscoelasticity. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011
doi_str_mv 10.1002/app.32938
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901658170</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2997498621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4348-16e660679b74f88ade1e4c4ac884d5a4c13b5e4718314eb45ea15434bacd20d63</originalsourceid><addsrcrecordid>eNp1kEtLw0AUhQdRsFYX_oOCiHSRdm7mkcmyFl9QtAtFd8N0cmOnpkmdSdT-e6PVLgRXd3G_73A4hBwDHQCl8dCsVgMWp0ztkA7QNIm4jNUu6bQ_iFSain1yEMKCUgBBZYf0px4zZ2tXPvdsNcfg3rCXG1c0Hnuu7NVz9MsqYB0OyV5uioBHP7dLHi4v7sfX0eTu6mY8mkSWM64ikCgllUk6S3iulMkQkFturFI8E4ZbYDOBPAHFgOOMCzQgWnNmbBbTTLIuOdvkrnz12mCo9dIFi0VhSqyaoFMKUihIaEue_CEXVePLtpwG1jZQIOMvqr-hrK9C8JjrlXdL49caqP7aTLeb6e_NWvb0J9EEa4rcm9K6sBVipniqlGi54YZ7dwWu_w_Uo-n0NznaGC7U-LE1jH_RMmGJ0I-3V1rAOaOTy1Q_sU8a-YdR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1367981620</pqid></control><display><type>article</type><title>Predicting cohesive failure in thermosets</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Adolf, Douglas B. ; Chambers, Robert S. ; Elisberg, Brenton ; Stavig, Mark ; Ruff, Mary</creator><creatorcontrib>Adolf, Douglas B. ; Chambers, Robert S. ; Elisberg, Brenton ; Stavig, Mark ; Ruff, Mary</creatorcontrib><description>Modeling of stresses in epoxies used as adhesives, coatings, or encapsulants in electronic packaging can guide an engineer to more robust designs and material selections. However, stresses by themselves allow evaluation of qualitative trends only. Quantitative assessment of design margins requires some knowledge of when stresses become excessive and failure is imminent. In this study, stresses were predicted accurately in a wide variety of tests, and the state of stress and strain was examined at the point of experimental failure to extract a single scalar metric that design engineers could use to correlate with the observed initiation of cracking. A value of the maximum principal strain of roughly 40% satisfactorily matched data encompassing different geometries, modes of deformation, and test temperature and is apparently linked to a physical mechanism of failure arising from “run‐away” nonlinear viscoelasticity. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011</description><identifier>ISSN: 0021-8995</identifier><identifier>ISSN: 1097-4628</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.32938</identifier><identifier>CODEN: JAPNAB</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Assessments ; Crack initiation ; Exact sciences and technology ; Failure ; Materials science ; Mathematical models ; Mechanical properties ; modeling ; Nonlinearity ; Physical properties ; Polymer industry, paints, wood ; Polymers ; Properties and testing ; Reproduction ; Strain ; Stresses ; Technology of polymers ; thermosets</subject><ispartof>Journal of applied polymer science, 2011-02, Vol.119 (4), p.2143-2152</ispartof><rights>Copyright © 2010 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4348-16e660679b74f88ade1e4c4ac884d5a4c13b5e4718314eb45ea15434bacd20d63</citedby><cites>FETCH-LOGICAL-c4348-16e660679b74f88ade1e4c4ac884d5a4c13b5e4718314eb45ea15434bacd20d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fapp.32938$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fapp.32938$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23849885$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Adolf, Douglas B.</creatorcontrib><creatorcontrib>Chambers, Robert S.</creatorcontrib><creatorcontrib>Elisberg, Brenton</creatorcontrib><creatorcontrib>Stavig, Mark</creatorcontrib><creatorcontrib>Ruff, Mary</creatorcontrib><title>Predicting cohesive failure in thermosets</title><title>Journal of applied polymer science</title><addtitle>J. Appl. Polym. Sci</addtitle><description>Modeling of stresses in epoxies used as adhesives, coatings, or encapsulants in electronic packaging can guide an engineer to more robust designs and material selections. However, stresses by themselves allow evaluation of qualitative trends only. Quantitative assessment of design margins requires some knowledge of when stresses become excessive and failure is imminent. In this study, stresses were predicted accurately in a wide variety of tests, and the state of stress and strain was examined at the point of experimental failure to extract a single scalar metric that design engineers could use to correlate with the observed initiation of cracking. A value of the maximum principal strain of roughly 40% satisfactorily matched data encompassing different geometries, modes of deformation, and test temperature and is apparently linked to a physical mechanism of failure arising from “run‐away” nonlinear viscoelasticity. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011</description><subject>Applied sciences</subject><subject>Assessments</subject><subject>Crack initiation</subject><subject>Exact sciences and technology</subject><subject>Failure</subject><subject>Materials science</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>modeling</subject><subject>Nonlinearity</subject><subject>Physical properties</subject><subject>Polymer industry, paints, wood</subject><subject>Polymers</subject><subject>Properties and testing</subject><subject>Reproduction</subject><subject>Strain</subject><subject>Stresses</subject><subject>Technology of polymers</subject><subject>thermosets</subject><issn>0021-8995</issn><issn>1097-4628</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLw0AUhQdRsFYX_oOCiHSRdm7mkcmyFl9QtAtFd8N0cmOnpkmdSdT-e6PVLgRXd3G_73A4hBwDHQCl8dCsVgMWp0ztkA7QNIm4jNUu6bQ_iFSain1yEMKCUgBBZYf0px4zZ2tXPvdsNcfg3rCXG1c0Hnuu7NVz9MsqYB0OyV5uioBHP7dLHi4v7sfX0eTu6mY8mkSWM64ikCgllUk6S3iulMkQkFturFI8E4ZbYDOBPAHFgOOMCzQgWnNmbBbTTLIuOdvkrnz12mCo9dIFi0VhSqyaoFMKUihIaEue_CEXVePLtpwG1jZQIOMvqr-hrK9C8JjrlXdL49caqP7aTLeb6e_NWvb0J9EEa4rcm9K6sBVipniqlGi54YZ7dwWu_w_Uo-n0NznaGC7U-LE1jH_RMmGJ0I-3V1rAOaOTy1Q_sU8a-YdR</recordid><startdate>20110215</startdate><enddate>20110215</enddate><creator>Adolf, Douglas B.</creator><creator>Chambers, Robert S.</creator><creator>Elisberg, Brenton</creator><creator>Stavig, Mark</creator><creator>Ruff, Mary</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20110215</creationdate><title>Predicting cohesive failure in thermosets</title><author>Adolf, Douglas B. ; Chambers, Robert S. ; Elisberg, Brenton ; Stavig, Mark ; Ruff, Mary</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4348-16e660679b74f88ade1e4c4ac884d5a4c13b5e4718314eb45ea15434bacd20d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Assessments</topic><topic>Crack initiation</topic><topic>Exact sciences and technology</topic><topic>Failure</topic><topic>Materials science</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>modeling</topic><topic>Nonlinearity</topic><topic>Physical properties</topic><topic>Polymer industry, paints, wood</topic><topic>Polymers</topic><topic>Properties and testing</topic><topic>Reproduction</topic><topic>Strain</topic><topic>Stresses</topic><topic>Technology of polymers</topic><topic>thermosets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adolf, Douglas B.</creatorcontrib><creatorcontrib>Chambers, Robert S.</creatorcontrib><creatorcontrib>Elisberg, Brenton</creatorcontrib><creatorcontrib>Stavig, Mark</creatorcontrib><creatorcontrib>Ruff, Mary</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adolf, Douglas B.</au><au>Chambers, Robert S.</au><au>Elisberg, Brenton</au><au>Stavig, Mark</au><au>Ruff, Mary</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting cohesive failure in thermosets</atitle><jtitle>Journal of applied polymer science</jtitle><addtitle>J. Appl. Polym. Sci</addtitle><date>2011-02-15</date><risdate>2011</risdate><volume>119</volume><issue>4</issue><spage>2143</spage><epage>2152</epage><pages>2143-2152</pages><issn>0021-8995</issn><issn>1097-4628</issn><eissn>1097-4628</eissn><coden>JAPNAB</coden><abstract>Modeling of stresses in epoxies used as adhesives, coatings, or encapsulants in electronic packaging can guide an engineer to more robust designs and material selections. However, stresses by themselves allow evaluation of qualitative trends only. Quantitative assessment of design margins requires some knowledge of when stresses become excessive and failure is imminent. In this study, stresses were predicted accurately in a wide variety of tests, and the state of stress and strain was examined at the point of experimental failure to extract a single scalar metric that design engineers could use to correlate with the observed initiation of cracking. A value of the maximum principal strain of roughly 40% satisfactorily matched data encompassing different geometries, modes of deformation, and test temperature and is apparently linked to a physical mechanism of failure arising from “run‐away” nonlinear viscoelasticity. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/app.32938</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8995
ispartof Journal of applied polymer science, 2011-02, Vol.119 (4), p.2143-2152
issn 0021-8995
1097-4628
1097-4628
language eng
recordid cdi_proquest_miscellaneous_901658170
source Wiley Online Library Journals Frontfile Complete
subjects Applied sciences
Assessments
Crack initiation
Exact sciences and technology
Failure
Materials science
Mathematical models
Mechanical properties
modeling
Nonlinearity
Physical properties
Polymer industry, paints, wood
Polymers
Properties and testing
Reproduction
Strain
Stresses
Technology of polymers
thermosets
title Predicting cohesive failure in thermosets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T22%3A39%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20cohesive%20failure%20in%20thermosets&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Adolf,%20Douglas%20B.&rft.date=2011-02-15&rft.volume=119&rft.issue=4&rft.spage=2143&rft.epage=2152&rft.pages=2143-2152&rft.issn=0021-8995&rft.eissn=1097-4628&rft.coden=JAPNAB&rft_id=info:doi/10.1002/app.32938&rft_dat=%3Cproquest_cross%3E2997498621%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1367981620&rft_id=info:pmid/&rfr_iscdi=true