Predicting cohesive failure in thermosets
Modeling of stresses in epoxies used as adhesives, coatings, or encapsulants in electronic packaging can guide an engineer to more robust designs and material selections. However, stresses by themselves allow evaluation of qualitative trends only. Quantitative assessment of design margins requires s...
Gespeichert in:
Veröffentlicht in: | Journal of applied polymer science 2011-02, Vol.119 (4), p.2143-2152 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2152 |
---|---|
container_issue | 4 |
container_start_page | 2143 |
container_title | Journal of applied polymer science |
container_volume | 119 |
creator | Adolf, Douglas B. Chambers, Robert S. Elisberg, Brenton Stavig, Mark Ruff, Mary |
description | Modeling of stresses in epoxies used as adhesives, coatings, or encapsulants in electronic packaging can guide an engineer to more robust designs and material selections. However, stresses by themselves allow evaluation of qualitative trends only. Quantitative assessment of design margins requires some knowledge of when stresses become excessive and failure is imminent. In this study, stresses were predicted accurately in a wide variety of tests, and the state of stress and strain was examined at the point of experimental failure to extract a single scalar metric that design engineers could use to correlate with the observed initiation of cracking. A value of the maximum principal strain of roughly 40% satisfactorily matched data encompassing different geometries, modes of deformation, and test temperature and is apparently linked to a physical mechanism of failure arising from “run‐away” nonlinear viscoelasticity. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 |
doi_str_mv | 10.1002/app.32938 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901658170</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2997498621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4348-16e660679b74f88ade1e4c4ac884d5a4c13b5e4718314eb45ea15434bacd20d63</originalsourceid><addsrcrecordid>eNp1kEtLw0AUhQdRsFYX_oOCiHSRdm7mkcmyFl9QtAtFd8N0cmOnpkmdSdT-e6PVLgRXd3G_73A4hBwDHQCl8dCsVgMWp0ztkA7QNIm4jNUu6bQ_iFSain1yEMKCUgBBZYf0px4zZ2tXPvdsNcfg3rCXG1c0Hnuu7NVz9MsqYB0OyV5uioBHP7dLHi4v7sfX0eTu6mY8mkSWM64ikCgllUk6S3iulMkQkFturFI8E4ZbYDOBPAHFgOOMCzQgWnNmbBbTTLIuOdvkrnz12mCo9dIFi0VhSqyaoFMKUihIaEue_CEXVePLtpwG1jZQIOMvqr-hrK9C8JjrlXdL49caqP7aTLeb6e_NWvb0J9EEa4rcm9K6sBVipniqlGi54YZ7dwWu_w_Uo-n0NznaGC7U-LE1jH_RMmGJ0I-3V1rAOaOTy1Q_sU8a-YdR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1367981620</pqid></control><display><type>article</type><title>Predicting cohesive failure in thermosets</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Adolf, Douglas B. ; Chambers, Robert S. ; Elisberg, Brenton ; Stavig, Mark ; Ruff, Mary</creator><creatorcontrib>Adolf, Douglas B. ; Chambers, Robert S. ; Elisberg, Brenton ; Stavig, Mark ; Ruff, Mary</creatorcontrib><description>Modeling of stresses in epoxies used as adhesives, coatings, or encapsulants in electronic packaging can guide an engineer to more robust designs and material selections. However, stresses by themselves allow evaluation of qualitative trends only. Quantitative assessment of design margins requires some knowledge of when stresses become excessive and failure is imminent. In this study, stresses were predicted accurately in a wide variety of tests, and the state of stress and strain was examined at the point of experimental failure to extract a single scalar metric that design engineers could use to correlate with the observed initiation of cracking. A value of the maximum principal strain of roughly 40% satisfactorily matched data encompassing different geometries, modes of deformation, and test temperature and is apparently linked to a physical mechanism of failure arising from “run‐away” nonlinear viscoelasticity. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011</description><identifier>ISSN: 0021-8995</identifier><identifier>ISSN: 1097-4628</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.32938</identifier><identifier>CODEN: JAPNAB</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Assessments ; Crack initiation ; Exact sciences and technology ; Failure ; Materials science ; Mathematical models ; Mechanical properties ; modeling ; Nonlinearity ; Physical properties ; Polymer industry, paints, wood ; Polymers ; Properties and testing ; Reproduction ; Strain ; Stresses ; Technology of polymers ; thermosets</subject><ispartof>Journal of applied polymer science, 2011-02, Vol.119 (4), p.2143-2152</ispartof><rights>Copyright © 2010 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4348-16e660679b74f88ade1e4c4ac884d5a4c13b5e4718314eb45ea15434bacd20d63</citedby><cites>FETCH-LOGICAL-c4348-16e660679b74f88ade1e4c4ac884d5a4c13b5e4718314eb45ea15434bacd20d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fapp.32938$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fapp.32938$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23849885$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Adolf, Douglas B.</creatorcontrib><creatorcontrib>Chambers, Robert S.</creatorcontrib><creatorcontrib>Elisberg, Brenton</creatorcontrib><creatorcontrib>Stavig, Mark</creatorcontrib><creatorcontrib>Ruff, Mary</creatorcontrib><title>Predicting cohesive failure in thermosets</title><title>Journal of applied polymer science</title><addtitle>J. Appl. Polym. Sci</addtitle><description>Modeling of stresses in epoxies used as adhesives, coatings, or encapsulants in electronic packaging can guide an engineer to more robust designs and material selections. However, stresses by themselves allow evaluation of qualitative trends only. Quantitative assessment of design margins requires some knowledge of when stresses become excessive and failure is imminent. In this study, stresses were predicted accurately in a wide variety of tests, and the state of stress and strain was examined at the point of experimental failure to extract a single scalar metric that design engineers could use to correlate with the observed initiation of cracking. A value of the maximum principal strain of roughly 40% satisfactorily matched data encompassing different geometries, modes of deformation, and test temperature and is apparently linked to a physical mechanism of failure arising from “run‐away” nonlinear viscoelasticity. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011</description><subject>Applied sciences</subject><subject>Assessments</subject><subject>Crack initiation</subject><subject>Exact sciences and technology</subject><subject>Failure</subject><subject>Materials science</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>modeling</subject><subject>Nonlinearity</subject><subject>Physical properties</subject><subject>Polymer industry, paints, wood</subject><subject>Polymers</subject><subject>Properties and testing</subject><subject>Reproduction</subject><subject>Strain</subject><subject>Stresses</subject><subject>Technology of polymers</subject><subject>thermosets</subject><issn>0021-8995</issn><issn>1097-4628</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLw0AUhQdRsFYX_oOCiHSRdm7mkcmyFl9QtAtFd8N0cmOnpkmdSdT-e6PVLgRXd3G_73A4hBwDHQCl8dCsVgMWp0ztkA7QNIm4jNUu6bQ_iFSain1yEMKCUgBBZYf0px4zZ2tXPvdsNcfg3rCXG1c0Hnuu7NVz9MsqYB0OyV5uioBHP7dLHi4v7sfX0eTu6mY8mkSWM64ikCgllUk6S3iulMkQkFturFI8E4ZbYDOBPAHFgOOMCzQgWnNmbBbTTLIuOdvkrnz12mCo9dIFi0VhSqyaoFMKUihIaEue_CEXVePLtpwG1jZQIOMvqr-hrK9C8JjrlXdL49caqP7aTLeb6e_NWvb0J9EEa4rcm9K6sBVipniqlGi54YZ7dwWu_w_Uo-n0NznaGC7U-LE1jH_RMmGJ0I-3V1rAOaOTy1Q_sU8a-YdR</recordid><startdate>20110215</startdate><enddate>20110215</enddate><creator>Adolf, Douglas B.</creator><creator>Chambers, Robert S.</creator><creator>Elisberg, Brenton</creator><creator>Stavig, Mark</creator><creator>Ruff, Mary</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20110215</creationdate><title>Predicting cohesive failure in thermosets</title><author>Adolf, Douglas B. ; Chambers, Robert S. ; Elisberg, Brenton ; Stavig, Mark ; Ruff, Mary</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4348-16e660679b74f88ade1e4c4ac884d5a4c13b5e4718314eb45ea15434bacd20d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Assessments</topic><topic>Crack initiation</topic><topic>Exact sciences and technology</topic><topic>Failure</topic><topic>Materials science</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>modeling</topic><topic>Nonlinearity</topic><topic>Physical properties</topic><topic>Polymer industry, paints, wood</topic><topic>Polymers</topic><topic>Properties and testing</topic><topic>Reproduction</topic><topic>Strain</topic><topic>Stresses</topic><topic>Technology of polymers</topic><topic>thermosets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adolf, Douglas B.</creatorcontrib><creatorcontrib>Chambers, Robert S.</creatorcontrib><creatorcontrib>Elisberg, Brenton</creatorcontrib><creatorcontrib>Stavig, Mark</creatorcontrib><creatorcontrib>Ruff, Mary</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adolf, Douglas B.</au><au>Chambers, Robert S.</au><au>Elisberg, Brenton</au><au>Stavig, Mark</au><au>Ruff, Mary</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting cohesive failure in thermosets</atitle><jtitle>Journal of applied polymer science</jtitle><addtitle>J. Appl. Polym. Sci</addtitle><date>2011-02-15</date><risdate>2011</risdate><volume>119</volume><issue>4</issue><spage>2143</spage><epage>2152</epage><pages>2143-2152</pages><issn>0021-8995</issn><issn>1097-4628</issn><eissn>1097-4628</eissn><coden>JAPNAB</coden><abstract>Modeling of stresses in epoxies used as adhesives, coatings, or encapsulants in electronic packaging can guide an engineer to more robust designs and material selections. However, stresses by themselves allow evaluation of qualitative trends only. Quantitative assessment of design margins requires some knowledge of when stresses become excessive and failure is imminent. In this study, stresses were predicted accurately in a wide variety of tests, and the state of stress and strain was examined at the point of experimental failure to extract a single scalar metric that design engineers could use to correlate with the observed initiation of cracking. A value of the maximum principal strain of roughly 40% satisfactorily matched data encompassing different geometries, modes of deformation, and test temperature and is apparently linked to a physical mechanism of failure arising from “run‐away” nonlinear viscoelasticity. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/app.32938</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8995 |
ispartof | Journal of applied polymer science, 2011-02, Vol.119 (4), p.2143-2152 |
issn | 0021-8995 1097-4628 1097-4628 |
language | eng |
recordid | cdi_proquest_miscellaneous_901658170 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Applied sciences Assessments Crack initiation Exact sciences and technology Failure Materials science Mathematical models Mechanical properties modeling Nonlinearity Physical properties Polymer industry, paints, wood Polymers Properties and testing Reproduction Strain Stresses Technology of polymers thermosets |
title | Predicting cohesive failure in thermosets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T22%3A39%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20cohesive%20failure%20in%20thermosets&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Adolf,%20Douglas%20B.&rft.date=2011-02-15&rft.volume=119&rft.issue=4&rft.spage=2143&rft.epage=2152&rft.pages=2143-2152&rft.issn=0021-8995&rft.eissn=1097-4628&rft.coden=JAPNAB&rft_id=info:doi/10.1002/app.32938&rft_dat=%3Cproquest_cross%3E2997498621%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1367981620&rft_id=info:pmid/&rfr_iscdi=true |