Quantum state sharing with a genuinely entangled five-qubit state and Bell-state measurements
We construct several distinct schemes for tripartite Quantum state sharing (QSTS) of arbitrary single- and two-qubit states. Our schemes use genuinely entangled five-qubit state that has recently been introduced by Brown et al. [J. Phys. A 38 1119 (2005)] as the quantum channel. The Bell-state measu...
Gespeichert in:
Veröffentlicht in: | Optics communications 2010-05, Vol.283 (9), p.1961-1965 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1965 |
---|---|
container_issue | 9 |
container_start_page | 1961 |
container_title | Optics communications |
container_volume | 283 |
creator | Hou, Kui Li, Yi-Bao Shi, Shou-Hua |
description | We construct several distinct schemes for tripartite Quantum state sharing (QSTS) of arbitrary single- and two-qubit states. Our schemes use genuinely entangled five-qubit state that has recently been introduced by Brown et al. [J. Phys. A 38 1119 (2005)] as the quantum channel. The Bell-state measurements and the single-qubit measurement are needed in our schemes. In comparison with the QSTS scheme using the same quantum channel [Phys. Rev. A 77 (2008) 032321], not joint measurement, which makes this scheme simpler than the latter. |
doi_str_mv | 10.1016/j.optcom.2009.12.024 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901656472</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0030401809012978</els_id><sourcerecordid>901656472</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-221ed4660422d784b92a1a1975cbae7c89ea8d978ed200d17da15ca8703f0ffb3</originalsourceid><addsrcrecordid>eNp9kM1r3DAQxUVJoJuk_0EPvpSc7I7kD8mXQhr6BYEQSI5BzErjjRZb3khyQv77Knjpsadh4L15836MfeZQceDd1301H5KZp0oA9BUXFYjmA9twJesSag4nbANQQ9kAVx_ZWYx7AOBNrTbs8W5Bn5apiAkTFfEJg_O74tWlpwKLHfnFeRrfCvIJ_W4kWwzuhcrnZevS0YPeFt9pHMt1nQjjEmjKjnjBTgccI306znP28PPH_fXv8ub215_rq5vS1J1KpRCcbNN10AhhpWq2vUCOvJet2SJJo3pCZXupyOaGlkuLvDWoJNQDDMO2PmeX691DmJ8XiklPLpr8E3qal6j7TKntGimyslmVJswxBhr0IbgJw5vmoN9h6r1eYep3mJoLnWFm25djAEaD4xDQGxf_eYXooJVtn3XfVh3lti-Ogo7GkTdkXSCTtJ3d_4P-AlGPjcM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901656472</pqid></control><display><type>article</type><title>Quantum state sharing with a genuinely entangled five-qubit state and Bell-state measurements</title><source>Elsevier ScienceDirect Journals</source><creator>Hou, Kui ; Li, Yi-Bao ; Shi, Shou-Hua</creator><creatorcontrib>Hou, Kui ; Li, Yi-Bao ; Shi, Shou-Hua</creatorcontrib><description>We construct several distinct schemes for tripartite Quantum state sharing (QSTS) of arbitrary single- and two-qubit states. Our schemes use genuinely entangled five-qubit state that has recently been introduced by Brown et al. [J. Phys. A 38 1119 (2005)] as the quantum channel. The Bell-state measurements and the single-qubit measurement are needed in our schemes. In comparison with the QSTS scheme using the same quantum channel [Phys. Rev. A 77 (2008) 032321], not joint measurement, which makes this scheme simpler than the latter.</description><identifier>ISSN: 0030-4018</identifier><identifier>EISSN: 1873-0310</identifier><identifier>DOI: 10.1016/j.optcom.2009.12.024</identifier><identifier>CODEN: OPCOB8</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Bell-state measurements ; Channels ; Classical and quantum physics: mechanics and fields ; Construction ; Exact sciences and technology ; Five-qubit state ; Physics ; Quantum information ; Quantum state sharing ; Single-qubit measurement</subject><ispartof>Optics communications, 2010-05, Vol.283 (9), p.1961-1965</ispartof><rights>2009</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-221ed4660422d784b92a1a1975cbae7c89ea8d978ed200d17da15ca8703f0ffb3</citedby><cites>FETCH-LOGICAL-c368t-221ed4660422d784b92a1a1975cbae7c89ea8d978ed200d17da15ca8703f0ffb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.optcom.2009.12.024$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22605759$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hou, Kui</creatorcontrib><creatorcontrib>Li, Yi-Bao</creatorcontrib><creatorcontrib>Shi, Shou-Hua</creatorcontrib><title>Quantum state sharing with a genuinely entangled five-qubit state and Bell-state measurements</title><title>Optics communications</title><description>We construct several distinct schemes for tripartite Quantum state sharing (QSTS) of arbitrary single- and two-qubit states. Our schemes use genuinely entangled five-qubit state that has recently been introduced by Brown et al. [J. Phys. A 38 1119 (2005)] as the quantum channel. The Bell-state measurements and the single-qubit measurement are needed in our schemes. In comparison with the QSTS scheme using the same quantum channel [Phys. Rev. A 77 (2008) 032321], not joint measurement, which makes this scheme simpler than the latter.</description><subject>Bell-state measurements</subject><subject>Channels</subject><subject>Classical and quantum physics: mechanics and fields</subject><subject>Construction</subject><subject>Exact sciences and technology</subject><subject>Five-qubit state</subject><subject>Physics</subject><subject>Quantum information</subject><subject>Quantum state sharing</subject><subject>Single-qubit measurement</subject><issn>0030-4018</issn><issn>1873-0310</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kM1r3DAQxUVJoJuk_0EPvpSc7I7kD8mXQhr6BYEQSI5BzErjjRZb3khyQv77Knjpsadh4L15836MfeZQceDd1301H5KZp0oA9BUXFYjmA9twJesSag4nbANQQ9kAVx_ZWYx7AOBNrTbs8W5Bn5apiAkTFfEJg_O74tWlpwKLHfnFeRrfCvIJ_W4kWwzuhcrnZevS0YPeFt9pHMt1nQjjEmjKjnjBTgccI306znP28PPH_fXv8ub215_rq5vS1J1KpRCcbNN10AhhpWq2vUCOvJet2SJJo3pCZXupyOaGlkuLvDWoJNQDDMO2PmeX691DmJ8XiklPLpr8E3qal6j7TKntGimyslmVJswxBhr0IbgJw5vmoN9h6r1eYep3mJoLnWFm25djAEaD4xDQGxf_eYXooJVtn3XfVh3lti-Ogo7GkTdkXSCTtJ3d_4P-AlGPjcM</recordid><startdate>20100501</startdate><enddate>20100501</enddate><creator>Hou, Kui</creator><creator>Li, Yi-Bao</creator><creator>Shi, Shou-Hua</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20100501</creationdate><title>Quantum state sharing with a genuinely entangled five-qubit state and Bell-state measurements</title><author>Hou, Kui ; Li, Yi-Bao ; Shi, Shou-Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-221ed4660422d784b92a1a1975cbae7c89ea8d978ed200d17da15ca8703f0ffb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Bell-state measurements</topic><topic>Channels</topic><topic>Classical and quantum physics: mechanics and fields</topic><topic>Construction</topic><topic>Exact sciences and technology</topic><topic>Five-qubit state</topic><topic>Physics</topic><topic>Quantum information</topic><topic>Quantum state sharing</topic><topic>Single-qubit measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hou, Kui</creatorcontrib><creatorcontrib>Li, Yi-Bao</creatorcontrib><creatorcontrib>Shi, Shou-Hua</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Optics communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hou, Kui</au><au>Li, Yi-Bao</au><au>Shi, Shou-Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum state sharing with a genuinely entangled five-qubit state and Bell-state measurements</atitle><jtitle>Optics communications</jtitle><date>2010-05-01</date><risdate>2010</risdate><volume>283</volume><issue>9</issue><spage>1961</spage><epage>1965</epage><pages>1961-1965</pages><issn>0030-4018</issn><eissn>1873-0310</eissn><coden>OPCOB8</coden><abstract>We construct several distinct schemes for tripartite Quantum state sharing (QSTS) of arbitrary single- and two-qubit states. Our schemes use genuinely entangled five-qubit state that has recently been introduced by Brown et al. [J. Phys. A 38 1119 (2005)] as the quantum channel. The Bell-state measurements and the single-qubit measurement are needed in our schemes. In comparison with the QSTS scheme using the same quantum channel [Phys. Rev. A 77 (2008) 032321], not joint measurement, which makes this scheme simpler than the latter.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.optcom.2009.12.024</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0030-4018 |
ispartof | Optics communications, 2010-05, Vol.283 (9), p.1961-1965 |
issn | 0030-4018 1873-0310 |
language | eng |
recordid | cdi_proquest_miscellaneous_901656472 |
source | Elsevier ScienceDirect Journals |
subjects | Bell-state measurements Channels Classical and quantum physics: mechanics and fields Construction Exact sciences and technology Five-qubit state Physics Quantum information Quantum state sharing Single-qubit measurement |
title | Quantum state sharing with a genuinely entangled five-qubit state and Bell-state measurements |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T19%3A13%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20state%20sharing%20with%20a%20genuinely%20entangled%20five-qubit%20state%20and%20Bell-state%20measurements&rft.jtitle=Optics%20communications&rft.au=Hou,%20Kui&rft.date=2010-05-01&rft.volume=283&rft.issue=9&rft.spage=1961&rft.epage=1965&rft.pages=1961-1965&rft.issn=0030-4018&rft.eissn=1873-0310&rft.coden=OPCOB8&rft_id=info:doi/10.1016/j.optcom.2009.12.024&rft_dat=%3Cproquest_cross%3E901656472%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=901656472&rft_id=info:pmid/&rft_els_id=S0030401809012978&rfr_iscdi=true |