UV-grafted gradient surface polyurethane membrane
Gradient surfaces of polyurethane (PU) membranes were created by UV grafting approach in a graded temperature field. Acrylic acid was selected as grafting monomer to improve the hydrophilicity of the surfaces. The Fourier transform infrared spectroscope (FTIR) spectra and scanning electronic microsc...
Gespeichert in:
Veröffentlicht in: | Journal of applied polymer science 2009-10, Vol.114 (2), p.769-774 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 774 |
---|---|
container_issue | 2 |
container_start_page | 769 |
container_title | Journal of applied polymer science |
container_volume | 114 |
creator | Zhao, Peizhong Hua, Xingyan Wang, Yuansheng Zhu, Jinhua Niu, Fei |
description | Gradient surfaces of polyurethane (PU) membranes were created by UV grafting approach in a graded temperature field. Acrylic acid was selected as grafting monomer to improve the hydrophilicity of the surfaces. The Fourier transform infrared spectroscope (FTIR) spectra and scanning electronic microscope (SEM) were used to characterize the gradient. The results showed that the graft yield increased gradually from the lower temperature end to the higher temperature end. As a result, the hydrophilicity of the gradient surfaces displayed a gradual change along the same direction. Water contact angle measurements also proved this point. The graft reaction rate was investigated as a function of positions along the PU membrane. The average grafting yield of PU membrane increased with the extending of UV light irradiation and increase of photo initiator dosage. |
doi_str_mv | 10.1002/app.30479 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901654733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>896218385</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4629-e349809d309f1d9ff6f1c9ddd7dc5aef922cf1a502481e58a4f8a17d10c625973</originalsourceid><addsrcrecordid>eNqFkM1O3DAUhS1UJKbAgifobKqKReDeOP5bUkSHSghGgoGlZfxD02YmwU5U5u3xNDC7itW15O98vj6EHCGcIEB5arruhEIl1A6ZIChRVLyUn8gk32EhlWJ75HNKvwEQGfAJwcV98RRN6L2b5ulqv-qnaYjBWD_t2mY9RN__Mis_XfrlY8yHA7IbTJP84dvcJ4sfF3fnl8XVzezn-dlVYfOTqvC0UhKUo6ACOhUCD2iVc044y4wPqixtQMOgrCR6Jk0VpEHhECwvmRJ0n3wbvV1snwefer2sk_VNk3doh6QVIGeVoPRDUipeoqSSZfJ4JG1sU4o-6C7WSxPXGkFv-tO5P_2vv8x-fbOaZE0T8t9tnbaBjZED3zhPR-5v3fj1_4X6bD5_Nxdjok69f9kmTPyjuaCC6Yfrmabz79czesm1zPyXkQ-m1eYp5i0WtyUg3TTAGQj6Cn_MlXY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>896218385</pqid></control><display><type>article</type><title>UV-grafted gradient surface polyurethane membrane</title><source>Access via Wiley Online Library</source><creator>Zhao, Peizhong ; Hua, Xingyan ; Wang, Yuansheng ; Zhu, Jinhua ; Niu, Fei</creator><creatorcontrib>Zhao, Peizhong ; Hua, Xingyan ; Wang, Yuansheng ; Zhu, Jinhua ; Niu, Fei</creatorcontrib><description>Gradient surfaces of polyurethane (PU) membranes were created by UV grafting approach in a graded temperature field. Acrylic acid was selected as grafting monomer to improve the hydrophilicity of the surfaces. The Fourier transform infrared spectroscope (FTIR) spectra and scanning electronic microscope (SEM) were used to characterize the gradient. The results showed that the graft yield increased gradually from the lower temperature end to the higher temperature end. As a result, the hydrophilicity of the gradient surfaces displayed a gradual change along the same direction. Water contact angle measurements also proved this point. The graft reaction rate was investigated as a function of positions along the PU membrane. The average grafting yield of PU membrane increased with the extending of UV light irradiation and increase of photo initiator dosage.</description><identifier>ISSN: 0021-8995</identifier><identifier>ISSN: 1097-4628</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.30479</identifier><identifier>CODEN: JAPNAB</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Contact angle ; Electronics ; Exact sciences and technology ; Exchange resins and membranes ; Forms of application and semi-finished materials ; gradient surface ; Grafting ; Hydrophilicity ; Membranes ; Monomers ; Polymer industry, paints, wood ; polyurethane ; Polyurethane resins ; Reproduction ; Spectrometers ; surface modification ; Technology of polymers ; UV grafting</subject><ispartof>Journal of applied polymer science, 2009-10, Vol.114 (2), p.769-774</ispartof><rights>Copyright © 2009 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4629-e349809d309f1d9ff6f1c9ddd7dc5aef922cf1a502481e58a4f8a17d10c625973</citedby><cites>FETCH-LOGICAL-c4629-e349809d309f1d9ff6f1c9ddd7dc5aef922cf1a502481e58a4f8a17d10c625973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fapp.30479$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fapp.30479$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21836065$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Peizhong</creatorcontrib><creatorcontrib>Hua, Xingyan</creatorcontrib><creatorcontrib>Wang, Yuansheng</creatorcontrib><creatorcontrib>Zhu, Jinhua</creatorcontrib><creatorcontrib>Niu, Fei</creatorcontrib><title>UV-grafted gradient surface polyurethane membrane</title><title>Journal of applied polymer science</title><addtitle>J. Appl. Polym. Sci</addtitle><description>Gradient surfaces of polyurethane (PU) membranes were created by UV grafting approach in a graded temperature field. Acrylic acid was selected as grafting monomer to improve the hydrophilicity of the surfaces. The Fourier transform infrared spectroscope (FTIR) spectra and scanning electronic microscope (SEM) were used to characterize the gradient. The results showed that the graft yield increased gradually from the lower temperature end to the higher temperature end. As a result, the hydrophilicity of the gradient surfaces displayed a gradual change along the same direction. Water contact angle measurements also proved this point. The graft reaction rate was investigated as a function of positions along the PU membrane. The average grafting yield of PU membrane increased with the extending of UV light irradiation and increase of photo initiator dosage.</description><subject>Applied sciences</subject><subject>Contact angle</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Exchange resins and membranes</subject><subject>Forms of application and semi-finished materials</subject><subject>gradient surface</subject><subject>Grafting</subject><subject>Hydrophilicity</subject><subject>Membranes</subject><subject>Monomers</subject><subject>Polymer industry, paints, wood</subject><subject>polyurethane</subject><subject>Polyurethane resins</subject><subject>Reproduction</subject><subject>Spectrometers</subject><subject>surface modification</subject><subject>Technology of polymers</subject><subject>UV grafting</subject><issn>0021-8995</issn><issn>1097-4628</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkM1O3DAUhS1UJKbAgifobKqKReDeOP5bUkSHSghGgoGlZfxD02YmwU5U5u3xNDC7itW15O98vj6EHCGcIEB5arruhEIl1A6ZIChRVLyUn8gk32EhlWJ75HNKvwEQGfAJwcV98RRN6L2b5ulqv-qnaYjBWD_t2mY9RN__Mis_XfrlY8yHA7IbTJP84dvcJ4sfF3fnl8XVzezn-dlVYfOTqvC0UhKUo6ACOhUCD2iVc044y4wPqixtQMOgrCR6Jk0VpEHhECwvmRJ0n3wbvV1snwefer2sk_VNk3doh6QVIGeVoPRDUipeoqSSZfJ4JG1sU4o-6C7WSxPXGkFv-tO5P_2vv8x-fbOaZE0T8t9tnbaBjZED3zhPR-5v3fj1_4X6bD5_Nxdjok69f9kmTPyjuaCC6Yfrmabz79czesm1zPyXkQ-m1eYp5i0WtyUg3TTAGQj6Cn_MlXY</recordid><startdate>20091015</startdate><enddate>20091015</enddate><creator>Zhao, Peizhong</creator><creator>Hua, Xingyan</creator><creator>Wang, Yuansheng</creator><creator>Zhu, Jinhua</creator><creator>Niu, Fei</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20091015</creationdate><title>UV-grafted gradient surface polyurethane membrane</title><author>Zhao, Peizhong ; Hua, Xingyan ; Wang, Yuansheng ; Zhu, Jinhua ; Niu, Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4629-e349809d309f1d9ff6f1c9ddd7dc5aef922cf1a502481e58a4f8a17d10c625973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Contact angle</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Exchange resins and membranes</topic><topic>Forms of application and semi-finished materials</topic><topic>gradient surface</topic><topic>Grafting</topic><topic>Hydrophilicity</topic><topic>Membranes</topic><topic>Monomers</topic><topic>Polymer industry, paints, wood</topic><topic>polyurethane</topic><topic>Polyurethane resins</topic><topic>Reproduction</topic><topic>Spectrometers</topic><topic>surface modification</topic><topic>Technology of polymers</topic><topic>UV grafting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Peizhong</creatorcontrib><creatorcontrib>Hua, Xingyan</creatorcontrib><creatorcontrib>Wang, Yuansheng</creatorcontrib><creatorcontrib>Zhu, Jinhua</creatorcontrib><creatorcontrib>Niu, Fei</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Peizhong</au><au>Hua, Xingyan</au><au>Wang, Yuansheng</au><au>Zhu, Jinhua</au><au>Niu, Fei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>UV-grafted gradient surface polyurethane membrane</atitle><jtitle>Journal of applied polymer science</jtitle><addtitle>J. Appl. Polym. Sci</addtitle><date>2009-10-15</date><risdate>2009</risdate><volume>114</volume><issue>2</issue><spage>769</spage><epage>774</epage><pages>769-774</pages><issn>0021-8995</issn><issn>1097-4628</issn><eissn>1097-4628</eissn><coden>JAPNAB</coden><abstract>Gradient surfaces of polyurethane (PU) membranes were created by UV grafting approach in a graded temperature field. Acrylic acid was selected as grafting monomer to improve the hydrophilicity of the surfaces. The Fourier transform infrared spectroscope (FTIR) spectra and scanning electronic microscope (SEM) were used to characterize the gradient. The results showed that the graft yield increased gradually from the lower temperature end to the higher temperature end. As a result, the hydrophilicity of the gradient surfaces displayed a gradual change along the same direction. Water contact angle measurements also proved this point. The graft reaction rate was investigated as a function of positions along the PU membrane. The average grafting yield of PU membrane increased with the extending of UV light irradiation and increase of photo initiator dosage.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/app.30479</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8995 |
ispartof | Journal of applied polymer science, 2009-10, Vol.114 (2), p.769-774 |
issn | 0021-8995 1097-4628 1097-4628 |
language | eng |
recordid | cdi_proquest_miscellaneous_901654733 |
source | Access via Wiley Online Library |
subjects | Applied sciences Contact angle Electronics Exact sciences and technology Exchange resins and membranes Forms of application and semi-finished materials gradient surface Grafting Hydrophilicity Membranes Monomers Polymer industry, paints, wood polyurethane Polyurethane resins Reproduction Spectrometers surface modification Technology of polymers UV grafting |
title | UV-grafted gradient surface polyurethane membrane |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T21%3A38%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=UV-grafted%20gradient%20surface%20polyurethane%20membrane&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Zhao,%20Peizhong&rft.date=2009-10-15&rft.volume=114&rft.issue=2&rft.spage=769&rft.epage=774&rft.pages=769-774&rft.issn=0021-8995&rft.eissn=1097-4628&rft.coden=JAPNAB&rft_id=info:doi/10.1002/app.30479&rft_dat=%3Cproquest_cross%3E896218385%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=896218385&rft_id=info:pmid/&rfr_iscdi=true |