UV-grafted gradient surface polyurethane membrane

Gradient surfaces of polyurethane (PU) membranes were created by UV grafting approach in a graded temperature field. Acrylic acid was selected as grafting monomer to improve the hydrophilicity of the surfaces. The Fourier transform infrared spectroscope (FTIR) spectra and scanning electronic microsc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2009-10, Vol.114 (2), p.769-774
Hauptverfasser: Zhao, Peizhong, Hua, Xingyan, Wang, Yuansheng, Zhu, Jinhua, Niu, Fei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 774
container_issue 2
container_start_page 769
container_title Journal of applied polymer science
container_volume 114
creator Zhao, Peizhong
Hua, Xingyan
Wang, Yuansheng
Zhu, Jinhua
Niu, Fei
description Gradient surfaces of polyurethane (PU) membranes were created by UV grafting approach in a graded temperature field. Acrylic acid was selected as grafting monomer to improve the hydrophilicity of the surfaces. The Fourier transform infrared spectroscope (FTIR) spectra and scanning electronic microscope (SEM) were used to characterize the gradient. The results showed that the graft yield increased gradually from the lower temperature end to the higher temperature end. As a result, the hydrophilicity of the gradient surfaces displayed a gradual change along the same direction. Water contact angle measurements also proved this point. The graft reaction rate was investigated as a function of positions along the PU membrane. The average grafting yield of PU membrane increased with the extending of UV light irradiation and increase of photo initiator dosage.
doi_str_mv 10.1002/app.30479
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901654733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>896218385</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4629-e349809d309f1d9ff6f1c9ddd7dc5aef922cf1a502481e58a4f8a17d10c625973</originalsourceid><addsrcrecordid>eNqFkM1O3DAUhS1UJKbAgifobKqKReDeOP5bUkSHSghGgoGlZfxD02YmwU5U5u3xNDC7itW15O98vj6EHCGcIEB5arruhEIl1A6ZIChRVLyUn8gk32EhlWJ75HNKvwEQGfAJwcV98RRN6L2b5ulqv-qnaYjBWD_t2mY9RN__Mis_XfrlY8yHA7IbTJP84dvcJ4sfF3fnl8XVzezn-dlVYfOTqvC0UhKUo6ACOhUCD2iVc044y4wPqixtQMOgrCR6Jk0VpEHhECwvmRJ0n3wbvV1snwefer2sk_VNk3doh6QVIGeVoPRDUipeoqSSZfJ4JG1sU4o-6C7WSxPXGkFv-tO5P_2vv8x-fbOaZE0T8t9tnbaBjZED3zhPR-5v3fj1_4X6bD5_Nxdjok69f9kmTPyjuaCC6Yfrmabz79czesm1zPyXkQ-m1eYp5i0WtyUg3TTAGQj6Cn_MlXY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>896218385</pqid></control><display><type>article</type><title>UV-grafted gradient surface polyurethane membrane</title><source>Access via Wiley Online Library</source><creator>Zhao, Peizhong ; Hua, Xingyan ; Wang, Yuansheng ; Zhu, Jinhua ; Niu, Fei</creator><creatorcontrib>Zhao, Peizhong ; Hua, Xingyan ; Wang, Yuansheng ; Zhu, Jinhua ; Niu, Fei</creatorcontrib><description>Gradient surfaces of polyurethane (PU) membranes were created by UV grafting approach in a graded temperature field. Acrylic acid was selected as grafting monomer to improve the hydrophilicity of the surfaces. The Fourier transform infrared spectroscope (FTIR) spectra and scanning electronic microscope (SEM) were used to characterize the gradient. The results showed that the graft yield increased gradually from the lower temperature end to the higher temperature end. As a result, the hydrophilicity of the gradient surfaces displayed a gradual change along the same direction. Water contact angle measurements also proved this point. The graft reaction rate was investigated as a function of positions along the PU membrane. The average grafting yield of PU membrane increased with the extending of UV light irradiation and increase of photo initiator dosage.</description><identifier>ISSN: 0021-8995</identifier><identifier>ISSN: 1097-4628</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.30479</identifier><identifier>CODEN: JAPNAB</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Contact angle ; Electronics ; Exact sciences and technology ; Exchange resins and membranes ; Forms of application and semi-finished materials ; gradient surface ; Grafting ; Hydrophilicity ; Membranes ; Monomers ; Polymer industry, paints, wood ; polyurethane ; Polyurethane resins ; Reproduction ; Spectrometers ; surface modification ; Technology of polymers ; UV grafting</subject><ispartof>Journal of applied polymer science, 2009-10, Vol.114 (2), p.769-774</ispartof><rights>Copyright © 2009 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4629-e349809d309f1d9ff6f1c9ddd7dc5aef922cf1a502481e58a4f8a17d10c625973</citedby><cites>FETCH-LOGICAL-c4629-e349809d309f1d9ff6f1c9ddd7dc5aef922cf1a502481e58a4f8a17d10c625973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fapp.30479$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fapp.30479$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21836065$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Peizhong</creatorcontrib><creatorcontrib>Hua, Xingyan</creatorcontrib><creatorcontrib>Wang, Yuansheng</creatorcontrib><creatorcontrib>Zhu, Jinhua</creatorcontrib><creatorcontrib>Niu, Fei</creatorcontrib><title>UV-grafted gradient surface polyurethane membrane</title><title>Journal of applied polymer science</title><addtitle>J. Appl. Polym. Sci</addtitle><description>Gradient surfaces of polyurethane (PU) membranes were created by UV grafting approach in a graded temperature field. Acrylic acid was selected as grafting monomer to improve the hydrophilicity of the surfaces. The Fourier transform infrared spectroscope (FTIR) spectra and scanning electronic microscope (SEM) were used to characterize the gradient. The results showed that the graft yield increased gradually from the lower temperature end to the higher temperature end. As a result, the hydrophilicity of the gradient surfaces displayed a gradual change along the same direction. Water contact angle measurements also proved this point. The graft reaction rate was investigated as a function of positions along the PU membrane. The average grafting yield of PU membrane increased with the extending of UV light irradiation and increase of photo initiator dosage.</description><subject>Applied sciences</subject><subject>Contact angle</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Exchange resins and membranes</subject><subject>Forms of application and semi-finished materials</subject><subject>gradient surface</subject><subject>Grafting</subject><subject>Hydrophilicity</subject><subject>Membranes</subject><subject>Monomers</subject><subject>Polymer industry, paints, wood</subject><subject>polyurethane</subject><subject>Polyurethane resins</subject><subject>Reproduction</subject><subject>Spectrometers</subject><subject>surface modification</subject><subject>Technology of polymers</subject><subject>UV grafting</subject><issn>0021-8995</issn><issn>1097-4628</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkM1O3DAUhS1UJKbAgifobKqKReDeOP5bUkSHSghGgoGlZfxD02YmwU5U5u3xNDC7itW15O98vj6EHCGcIEB5arruhEIl1A6ZIChRVLyUn8gk32EhlWJ75HNKvwEQGfAJwcV98RRN6L2b5ulqv-qnaYjBWD_t2mY9RN__Mis_XfrlY8yHA7IbTJP84dvcJ4sfF3fnl8XVzezn-dlVYfOTqvC0UhKUo6ACOhUCD2iVc044y4wPqixtQMOgrCR6Jk0VpEHhECwvmRJ0n3wbvV1snwefer2sk_VNk3doh6QVIGeVoPRDUipeoqSSZfJ4JG1sU4o-6C7WSxPXGkFv-tO5P_2vv8x-fbOaZE0T8t9tnbaBjZED3zhPR-5v3fj1_4X6bD5_Nxdjok69f9kmTPyjuaCC6Yfrmabz79czesm1zPyXkQ-m1eYp5i0WtyUg3TTAGQj6Cn_MlXY</recordid><startdate>20091015</startdate><enddate>20091015</enddate><creator>Zhao, Peizhong</creator><creator>Hua, Xingyan</creator><creator>Wang, Yuansheng</creator><creator>Zhu, Jinhua</creator><creator>Niu, Fei</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20091015</creationdate><title>UV-grafted gradient surface polyurethane membrane</title><author>Zhao, Peizhong ; Hua, Xingyan ; Wang, Yuansheng ; Zhu, Jinhua ; Niu, Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4629-e349809d309f1d9ff6f1c9ddd7dc5aef922cf1a502481e58a4f8a17d10c625973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Contact angle</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Exchange resins and membranes</topic><topic>Forms of application and semi-finished materials</topic><topic>gradient surface</topic><topic>Grafting</topic><topic>Hydrophilicity</topic><topic>Membranes</topic><topic>Monomers</topic><topic>Polymer industry, paints, wood</topic><topic>polyurethane</topic><topic>Polyurethane resins</topic><topic>Reproduction</topic><topic>Spectrometers</topic><topic>surface modification</topic><topic>Technology of polymers</topic><topic>UV grafting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Peizhong</creatorcontrib><creatorcontrib>Hua, Xingyan</creatorcontrib><creatorcontrib>Wang, Yuansheng</creatorcontrib><creatorcontrib>Zhu, Jinhua</creatorcontrib><creatorcontrib>Niu, Fei</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Peizhong</au><au>Hua, Xingyan</au><au>Wang, Yuansheng</au><au>Zhu, Jinhua</au><au>Niu, Fei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>UV-grafted gradient surface polyurethane membrane</atitle><jtitle>Journal of applied polymer science</jtitle><addtitle>J. Appl. Polym. Sci</addtitle><date>2009-10-15</date><risdate>2009</risdate><volume>114</volume><issue>2</issue><spage>769</spage><epage>774</epage><pages>769-774</pages><issn>0021-8995</issn><issn>1097-4628</issn><eissn>1097-4628</eissn><coden>JAPNAB</coden><abstract>Gradient surfaces of polyurethane (PU) membranes were created by UV grafting approach in a graded temperature field. Acrylic acid was selected as grafting monomer to improve the hydrophilicity of the surfaces. The Fourier transform infrared spectroscope (FTIR) spectra and scanning electronic microscope (SEM) were used to characterize the gradient. The results showed that the graft yield increased gradually from the lower temperature end to the higher temperature end. As a result, the hydrophilicity of the gradient surfaces displayed a gradual change along the same direction. Water contact angle measurements also proved this point. The graft reaction rate was investigated as a function of positions along the PU membrane. The average grafting yield of PU membrane increased with the extending of UV light irradiation and increase of photo initiator dosage.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/app.30479</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8995
ispartof Journal of applied polymer science, 2009-10, Vol.114 (2), p.769-774
issn 0021-8995
1097-4628
1097-4628
language eng
recordid cdi_proquest_miscellaneous_901654733
source Access via Wiley Online Library
subjects Applied sciences
Contact angle
Electronics
Exact sciences and technology
Exchange resins and membranes
Forms of application and semi-finished materials
gradient surface
Grafting
Hydrophilicity
Membranes
Monomers
Polymer industry, paints, wood
polyurethane
Polyurethane resins
Reproduction
Spectrometers
surface modification
Technology of polymers
UV grafting
title UV-grafted gradient surface polyurethane membrane
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T21%3A38%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=UV-grafted%20gradient%20surface%20polyurethane%20membrane&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Zhao,%20Peizhong&rft.date=2009-10-15&rft.volume=114&rft.issue=2&rft.spage=769&rft.epage=774&rft.pages=769-774&rft.issn=0021-8995&rft.eissn=1097-4628&rft.coden=JAPNAB&rft_id=info:doi/10.1002/app.30479&rft_dat=%3Cproquest_cross%3E896218385%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=896218385&rft_id=info:pmid/&rfr_iscdi=true