Characterization of the fracture behavior of glass fiber reinforced thermoplastics based on PP, PE-HD, and PB-1
This article deals with the influence of the polymeric matrix, such as isotactic polypropylene (iPP), polyethylene (PE-HD), and isotactic polybutene-1 (iPB-1), and the glass fiber content on the material behavior of short glass fiber reinforced thermoplastics. The glass fiber content of all material...
Gespeichert in:
Veröffentlicht in: | Journal of applied polymer science 2010-02, Vol.115 (4), p.2093-2102 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2102 |
---|---|
container_issue | 4 |
container_start_page | 2093 |
container_title | Journal of applied polymer science |
container_volume | 115 |
creator | Schoßig, Marcus Grellmann, Wolfgang Mecklenburg, Thomas |
description | This article deals with the influence of the polymeric matrix, such as isotactic polypropylene (iPP), polyethylene (PE-HD), and isotactic polybutene-1 (iPB-1), and the glass fiber content on the material behavior of short glass fiber reinforced thermoplastics. The glass fiber content of all materials ranged between 0 and 50 wt %, which corresponds to a volume content between 0 and approx. 0.264. To describe the mechanical properties of all materials, the stiffness, strength, hardness, and toughness behavior were determined. The crack toughness behavior regarding unstable crack propagation was also assessed by applying fracture mechanics concepts. It was found that the energy-determined J-values for the PP material system reach their maximum at a glass fiber content of 0.135. In contrast, the crack toughness of the PE-HD materials increases continuously with increasing glass fiber content due to the unchanged deformation ability at simultaneously increasing strength. The toughness level of the PB-1 materials is nearly the same independent of the glass fiber content due to the opposite trend of the load and the deformation ability. |
doi_str_mv | 10.1002/app.31271 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901654260</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671456711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4261-dae59588a834c49fef55ea9a0e2a0e3b4bd56e26b61a3b0f04f1cd15e5c8985b3</originalsourceid><addsrcrecordid>eNp9kEFv1DAQhSMEEkvhwC8gFwRITetxYic5lt3SIiqIREu5WRPvuGvIxsHOtpRfj0NKb3CwLc373rP9kuQ5sANgjB_iMBzkwEt4kCyA1WVWSF49TBZRg6yqa_E4eRLCN8YABJOLxC036FGP5O0vHK3rU2fScUOpmaY7T2lLG7y2zk_CVYchpMa25FNPtjfOa1pPvN-6IYqj1SFtMcRhjGqa_bQ5zk5X-yn267R5m8HT5JHBLtCzu3MvuXh3fL48zc4-nbxfHp1luuASsjWSqEVVYZUXuqgNGSEIa2TE48rbol0LSVy2EjBvmWGFAb0GQUJXdSXafC95NecO3v3YURjV1gZNXYc9uV1QNQMp4lUskq__S4IsoRBxg4i-mVHtXQiejBq83aK_VcDUVL-K9as_9Uf25V0sBo1drLPXNtwbOOelEKKK3OHM3diObv8dqI6a5m9yNjtsGOnnvQP9dyXLvBTq8uOJulx9aFbnX7-o6YMvZt6gU3jl4ysuPnMGOYOSyVLU-W-Lo6tC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671456711</pqid></control><display><type>article</type><title>Characterization of the fracture behavior of glass fiber reinforced thermoplastics based on PP, PE-HD, and PB-1</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Schoßig, Marcus ; Grellmann, Wolfgang ; Mecklenburg, Thomas</creator><creatorcontrib>Schoßig, Marcus ; Grellmann, Wolfgang ; Mecklenburg, Thomas</creatorcontrib><description>This article deals with the influence of the polymeric matrix, such as isotactic polypropylene (iPP), polyethylene (PE-HD), and isotactic polybutene-1 (iPB-1), and the glass fiber content on the material behavior of short glass fiber reinforced thermoplastics. The glass fiber content of all materials ranged between 0 and 50 wt %, which corresponds to a volume content between 0 and approx. 0.264. To describe the mechanical properties of all materials, the stiffness, strength, hardness, and toughness behavior were determined. The crack toughness behavior regarding unstable crack propagation was also assessed by applying fracture mechanics concepts. It was found that the energy-determined J-values for the PP material system reach their maximum at a glass fiber content of 0.135. In contrast, the crack toughness of the PE-HD materials increases continuously with increasing glass fiber content due to the unchanged deformation ability at simultaneously increasing strength. The toughness level of the PB-1 materials is nearly the same independent of the glass fiber content due to the opposite trend of the load and the deformation ability.</description><identifier>ISSN: 0021-8995</identifier><identifier>ISSN: 1097-4628</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.31271</identifier><identifier>CODEN: JAPNAB</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Composites ; Exact sciences and technology ; Forms of application and semi-finished materials ; Fracture mechanics ; Fracture toughness ; Glass fiber reinforced plastics ; Glass fibers ; instrumented Charpy impact test (ICIT) ; instrumented hardness measurement ; Isotactic ; Lead (metal) ; Polymer industry, paints, wood ; Polypropylenes ; short glass fiber reinforced polyolefins ; Technology of polymers ; Thermoplastic resins</subject><ispartof>Journal of applied polymer science, 2010-02, Vol.115 (4), p.2093-2102</ispartof><rights>Copyright © 2009 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4261-dae59588a834c49fef55ea9a0e2a0e3b4bd56e26b61a3b0f04f1cd15e5c8985b3</citedby><cites>FETCH-LOGICAL-c4261-dae59588a834c49fef55ea9a0e2a0e3b4bd56e26b61a3b0f04f1cd15e5c8985b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fapp.31271$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fapp.31271$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22275558$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Schoßig, Marcus</creatorcontrib><creatorcontrib>Grellmann, Wolfgang</creatorcontrib><creatorcontrib>Mecklenburg, Thomas</creatorcontrib><title>Characterization of the fracture behavior of glass fiber reinforced thermoplastics based on PP, PE-HD, and PB-1</title><title>Journal of applied polymer science</title><addtitle>J. Appl. Polym. Sci</addtitle><description>This article deals with the influence of the polymeric matrix, such as isotactic polypropylene (iPP), polyethylene (PE-HD), and isotactic polybutene-1 (iPB-1), and the glass fiber content on the material behavior of short glass fiber reinforced thermoplastics. The glass fiber content of all materials ranged between 0 and 50 wt %, which corresponds to a volume content between 0 and approx. 0.264. To describe the mechanical properties of all materials, the stiffness, strength, hardness, and toughness behavior were determined. The crack toughness behavior regarding unstable crack propagation was also assessed by applying fracture mechanics concepts. It was found that the energy-determined J-values for the PP material system reach their maximum at a glass fiber content of 0.135. In contrast, the crack toughness of the PE-HD materials increases continuously with increasing glass fiber content due to the unchanged deformation ability at simultaneously increasing strength. The toughness level of the PB-1 materials is nearly the same independent of the glass fiber content due to the opposite trend of the load and the deformation ability.</description><subject>Applied sciences</subject><subject>Composites</subject><subject>Exact sciences and technology</subject><subject>Forms of application and semi-finished materials</subject><subject>Fracture mechanics</subject><subject>Fracture toughness</subject><subject>Glass fiber reinforced plastics</subject><subject>Glass fibers</subject><subject>instrumented Charpy impact test (ICIT)</subject><subject>instrumented hardness measurement</subject><subject>Isotactic</subject><subject>Lead (metal)</subject><subject>Polymer industry, paints, wood</subject><subject>Polypropylenes</subject><subject>short glass fiber reinforced polyolefins</subject><subject>Technology of polymers</subject><subject>Thermoplastic resins</subject><issn>0021-8995</issn><issn>1097-4628</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kEFv1DAQhSMEEkvhwC8gFwRITetxYic5lt3SIiqIREu5WRPvuGvIxsHOtpRfj0NKb3CwLc373rP9kuQ5sANgjB_iMBzkwEt4kCyA1WVWSF49TBZRg6yqa_E4eRLCN8YABJOLxC036FGP5O0vHK3rU2fScUOpmaY7T2lLG7y2zk_CVYchpMa25FNPtjfOa1pPvN-6IYqj1SFtMcRhjGqa_bQ5zk5X-yn267R5m8HT5JHBLtCzu3MvuXh3fL48zc4-nbxfHp1luuASsjWSqEVVYZUXuqgNGSEIa2TE48rbol0LSVy2EjBvmWGFAb0GQUJXdSXafC95NecO3v3YURjV1gZNXYc9uV1QNQMp4lUskq__S4IsoRBxg4i-mVHtXQiejBq83aK_VcDUVL-K9as_9Uf25V0sBo1drLPXNtwbOOelEKKK3OHM3diObv8dqI6a5m9yNjtsGOnnvQP9dyXLvBTq8uOJulx9aFbnX7-o6YMvZt6gU3jl4ysuPnMGOYOSyVLU-W-Lo6tC</recordid><startdate>20100215</startdate><enddate>20100215</enddate><creator>Schoßig, Marcus</creator><creator>Grellmann, Wolfgang</creator><creator>Mecklenburg, Thomas</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20100215</creationdate><title>Characterization of the fracture behavior of glass fiber reinforced thermoplastics based on PP, PE-HD, and PB-1</title><author>Schoßig, Marcus ; Grellmann, Wolfgang ; Mecklenburg, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4261-dae59588a834c49fef55ea9a0e2a0e3b4bd56e26b61a3b0f04f1cd15e5c8985b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Composites</topic><topic>Exact sciences and technology</topic><topic>Forms of application and semi-finished materials</topic><topic>Fracture mechanics</topic><topic>Fracture toughness</topic><topic>Glass fiber reinforced plastics</topic><topic>Glass fibers</topic><topic>instrumented Charpy impact test (ICIT)</topic><topic>instrumented hardness measurement</topic><topic>Isotactic</topic><topic>Lead (metal)</topic><topic>Polymer industry, paints, wood</topic><topic>Polypropylenes</topic><topic>short glass fiber reinforced polyolefins</topic><topic>Technology of polymers</topic><topic>Thermoplastic resins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schoßig, Marcus</creatorcontrib><creatorcontrib>Grellmann, Wolfgang</creatorcontrib><creatorcontrib>Mecklenburg, Thomas</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schoßig, Marcus</au><au>Grellmann, Wolfgang</au><au>Mecklenburg, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of the fracture behavior of glass fiber reinforced thermoplastics based on PP, PE-HD, and PB-1</atitle><jtitle>Journal of applied polymer science</jtitle><addtitle>J. Appl. Polym. Sci</addtitle><date>2010-02-15</date><risdate>2010</risdate><volume>115</volume><issue>4</issue><spage>2093</spage><epage>2102</epage><pages>2093-2102</pages><issn>0021-8995</issn><issn>1097-4628</issn><eissn>1097-4628</eissn><coden>JAPNAB</coden><abstract>This article deals with the influence of the polymeric matrix, such as isotactic polypropylene (iPP), polyethylene (PE-HD), and isotactic polybutene-1 (iPB-1), and the glass fiber content on the material behavior of short glass fiber reinforced thermoplastics. The glass fiber content of all materials ranged between 0 and 50 wt %, which corresponds to a volume content between 0 and approx. 0.264. To describe the mechanical properties of all materials, the stiffness, strength, hardness, and toughness behavior were determined. The crack toughness behavior regarding unstable crack propagation was also assessed by applying fracture mechanics concepts. It was found that the energy-determined J-values for the PP material system reach their maximum at a glass fiber content of 0.135. In contrast, the crack toughness of the PE-HD materials increases continuously with increasing glass fiber content due to the unchanged deformation ability at simultaneously increasing strength. The toughness level of the PB-1 materials is nearly the same independent of the glass fiber content due to the opposite trend of the load and the deformation ability.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/app.31271</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8995 |
ispartof | Journal of applied polymer science, 2010-02, Vol.115 (4), p.2093-2102 |
issn | 0021-8995 1097-4628 1097-4628 |
language | eng |
recordid | cdi_proquest_miscellaneous_901654260 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Applied sciences Composites Exact sciences and technology Forms of application and semi-finished materials Fracture mechanics Fracture toughness Glass fiber reinforced plastics Glass fibers instrumented Charpy impact test (ICIT) instrumented hardness measurement Isotactic Lead (metal) Polymer industry, paints, wood Polypropylenes short glass fiber reinforced polyolefins Technology of polymers Thermoplastic resins |
title | Characterization of the fracture behavior of glass fiber reinforced thermoplastics based on PP, PE-HD, and PB-1 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T13%3A49%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20the%20fracture%20behavior%20of%20glass%20fiber%20reinforced%20thermoplastics%20based%20on%20PP,%20PE-HD,%20and%20PB-1&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Scho%C3%9Fig,%20Marcus&rft.date=2010-02-15&rft.volume=115&rft.issue=4&rft.spage=2093&rft.epage=2102&rft.pages=2093-2102&rft.issn=0021-8995&rft.eissn=1097-4628&rft.coden=JAPNAB&rft_id=info:doi/10.1002/app.31271&rft_dat=%3Cproquest_cross%3E1671456711%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671456711&rft_id=info:pmid/&rfr_iscdi=true |