Hydrogel-MWCNT nanocomposites: Synthesis, characterization, and heating with radiofrequency fields

Hydrogel nanocomposites are attractive biomaterials for numerous applications including tissue engineering, drug delivery, cancer treatment, sensors, and actuators. Here we present a nanocomposite of multiwalled carbon nanotubes (MWCNT) and temperature responsive N‐isopropylacrylamide hydrogels. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2010-08, Vol.117 (3), p.1813-1819
Hauptverfasser: Satarkar, Nitin S., Johnson, Don, Marrs, Brock, Andrews, Rodney, Poh, Churn, Gharaibeh, Belal, Saito, Kozo, Anderson, Kimberly W., Hilt, J. Zach
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1819
container_issue 3
container_start_page 1813
container_title Journal of applied polymer science
container_volume 117
creator Satarkar, Nitin S.
Johnson, Don
Marrs, Brock
Andrews, Rodney
Poh, Churn
Gharaibeh, Belal
Saito, Kozo
Anderson, Kimberly W.
Hilt, J. Zach
description Hydrogel nanocomposites are attractive biomaterials for numerous applications including tissue engineering, drug delivery, cancer treatment, sensors, and actuators. Here we present a nanocomposite of multiwalled carbon nanotubes (MWCNT) and temperature responsive N‐isopropylacrylamide hydrogels. The lower critical solution temperature (LCST) of the nanocomposites was tailored for physiological applications by the addition of varying amounts of acrylamide (AAm). The addition of nanotubes contributed to interesting properties, including tailorability of temperature responsive swelling and mechanical strength of the resultant nanocomposites. The mechanical properties of the nanocomposites were studied over a range of temperatures (25–55°C) to characterize the effect of nanotube addition. A radiofrequency (RF) field of 13.56 MHz was applied to the nanocomposite discs, and the resultant heating was characterized using infrared thermography. This is the first report on the use of RF to remotely heat MWCNT‐hydrogel nanocomposites. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010
doi_str_mv 10.1002/app.32138
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901653954</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>896233070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4018-b0d8c8a02b78a0f9882fac2c787973d1cbe1cd9d81568c4570f96140b9323873</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK4e_Ae9iAh2zUfbJN6kqCv4hS7oLaRp6ka7SU0qWn-90VVv4hxmGOZ534EXgG0EJwhCfCC7bkIwImwFjBDkNM0KzFbBKN5QyjjP18FGCI8QIpTDYgSq6VB796Db9OKuvJwlVlqn3KJzwfQ6HCa3g-3nOpiwn6i59FL12pt32Rtn9xNp62Su42IfklfTzxMva-Mar59ftFVD0hjd1mETrDWyDXrre47B7OR4Vk7T86vTs_LoPFUZRCytYM0UkxBXNPaGM4YbqbCijHJKaqQqjVTNa4bygqksp5EpUAYrTjBhlIzB7tK28y7-D71YmKB020qr3UsQHKIiJzzP_iUZLzAhkMJI7i1J5V0IXjei82Yh_SAQFJ95i5i3-Mo7sjvfrjIo2TZeWmXCrwBjxjISawwOltyrafXwt6E4ur7-cU6XChN6_farkP5JFJTQXNxdnoqyvLm_QOReMPIB2Dyd8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>896233070</pqid></control><display><type>article</type><title>Hydrogel-MWCNT nanocomposites: Synthesis, characterization, and heating with radiofrequency fields</title><source>Wiley Online Library All Journals</source><creator>Satarkar, Nitin S. ; Johnson, Don ; Marrs, Brock ; Andrews, Rodney ; Poh, Churn ; Gharaibeh, Belal ; Saito, Kozo ; Anderson, Kimberly W. ; Hilt, J. Zach</creator><creatorcontrib>Satarkar, Nitin S. ; Johnson, Don ; Marrs, Brock ; Andrews, Rodney ; Poh, Churn ; Gharaibeh, Belal ; Saito, Kozo ; Anderson, Kimberly W. ; Hilt, J. Zach</creatorcontrib><description>Hydrogel nanocomposites are attractive biomaterials for numerous applications including tissue engineering, drug delivery, cancer treatment, sensors, and actuators. Here we present a nanocomposite of multiwalled carbon nanotubes (MWCNT) and temperature responsive N‐isopropylacrylamide hydrogels. The lower critical solution temperature (LCST) of the nanocomposites was tailored for physiological applications by the addition of varying amounts of acrylamide (AAm). The addition of nanotubes contributed to interesting properties, including tailorability of temperature responsive swelling and mechanical strength of the resultant nanocomposites. The mechanical properties of the nanocomposites were studied over a range of temperatures (25–55°C) to characterize the effect of nanotube addition. A radiofrequency (RF) field of 13.56 MHz was applied to the nanocomposite discs, and the resultant heating was characterized using infrared thermography. This is the first report on the use of RF to remotely heat MWCNT‐hydrogel nanocomposites. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010</description><identifier>ISSN: 0021-8995</identifier><identifier>ISSN: 1097-4628</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.32138</identifier><identifier>CODEN: JAPNAB</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Biological and medical sciences ; carbon nanotubes ; Composites ; Drug delivery systems ; Exact sciences and technology ; Forms of application and semi-finished materials ; Heating ; Hydrogels ; Medical sciences ; Nanocomposites ; Nanotubes ; Polymer industry, paints, wood ; Radio frequencies ; Radiofrequency ; Reproduction ; Resultants ; Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases ; Technology of polymers ; Technology. Biomaterials. Equipments ; temperature responsive</subject><ispartof>Journal of applied polymer science, 2010-08, Vol.117 (3), p.1813-1819</ispartof><rights>Copyright © 2010 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4018-b0d8c8a02b78a0f9882fac2c787973d1cbe1cd9d81568c4570f96140b9323873</citedby><cites>FETCH-LOGICAL-c4018-b0d8c8a02b78a0f9882fac2c787973d1cbe1cd9d81568c4570f96140b9323873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fapp.32138$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fapp.32138$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22884333$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Satarkar, Nitin S.</creatorcontrib><creatorcontrib>Johnson, Don</creatorcontrib><creatorcontrib>Marrs, Brock</creatorcontrib><creatorcontrib>Andrews, Rodney</creatorcontrib><creatorcontrib>Poh, Churn</creatorcontrib><creatorcontrib>Gharaibeh, Belal</creatorcontrib><creatorcontrib>Saito, Kozo</creatorcontrib><creatorcontrib>Anderson, Kimberly W.</creatorcontrib><creatorcontrib>Hilt, J. Zach</creatorcontrib><title>Hydrogel-MWCNT nanocomposites: Synthesis, characterization, and heating with radiofrequency fields</title><title>Journal of applied polymer science</title><addtitle>J. Appl. Polym. Sci</addtitle><description>Hydrogel nanocomposites are attractive biomaterials for numerous applications including tissue engineering, drug delivery, cancer treatment, sensors, and actuators. Here we present a nanocomposite of multiwalled carbon nanotubes (MWCNT) and temperature responsive N‐isopropylacrylamide hydrogels. The lower critical solution temperature (LCST) of the nanocomposites was tailored for physiological applications by the addition of varying amounts of acrylamide (AAm). The addition of nanotubes contributed to interesting properties, including tailorability of temperature responsive swelling and mechanical strength of the resultant nanocomposites. The mechanical properties of the nanocomposites were studied over a range of temperatures (25–55°C) to characterize the effect of nanotube addition. A radiofrequency (RF) field of 13.56 MHz was applied to the nanocomposite discs, and the resultant heating was characterized using infrared thermography. This is the first report on the use of RF to remotely heat MWCNT‐hydrogel nanocomposites. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010</description><subject>Applied sciences</subject><subject>Biological and medical sciences</subject><subject>carbon nanotubes</subject><subject>Composites</subject><subject>Drug delivery systems</subject><subject>Exact sciences and technology</subject><subject>Forms of application and semi-finished materials</subject><subject>Heating</subject><subject>Hydrogels</subject><subject>Medical sciences</subject><subject>Nanocomposites</subject><subject>Nanotubes</subject><subject>Polymer industry, paints, wood</subject><subject>Radio frequencies</subject><subject>Radiofrequency</subject><subject>Reproduction</subject><subject>Resultants</subject><subject>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</subject><subject>Technology of polymers</subject><subject>Technology. Biomaterials. Equipments</subject><subject>temperature responsive</subject><issn>0021-8995</issn><issn>1097-4628</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK4e_Ae9iAh2zUfbJN6kqCv4hS7oLaRp6ka7SU0qWn-90VVv4hxmGOZ534EXgG0EJwhCfCC7bkIwImwFjBDkNM0KzFbBKN5QyjjP18FGCI8QIpTDYgSq6VB796Db9OKuvJwlVlqn3KJzwfQ6HCa3g-3nOpiwn6i59FL12pt32Rtn9xNp62Su42IfklfTzxMva-Mar59ftFVD0hjd1mETrDWyDXrre47B7OR4Vk7T86vTs_LoPFUZRCytYM0UkxBXNPaGM4YbqbCijHJKaqQqjVTNa4bygqksp5EpUAYrTjBhlIzB7tK28y7-D71YmKB020qr3UsQHKIiJzzP_iUZLzAhkMJI7i1J5V0IXjei82Yh_SAQFJ95i5i3-Mo7sjvfrjIo2TZeWmXCrwBjxjISawwOltyrafXwt6E4ur7-cU6XChN6_farkP5JFJTQXNxdnoqyvLm_QOReMPIB2Dyd8g</recordid><startdate>20100801</startdate><enddate>20100801</enddate><creator>Satarkar, Nitin S.</creator><creator>Johnson, Don</creator><creator>Marrs, Brock</creator><creator>Andrews, Rodney</creator><creator>Poh, Churn</creator><creator>Gharaibeh, Belal</creator><creator>Saito, Kozo</creator><creator>Anderson, Kimberly W.</creator><creator>Hilt, J. Zach</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20100801</creationdate><title>Hydrogel-MWCNT nanocomposites: Synthesis, characterization, and heating with radiofrequency fields</title><author>Satarkar, Nitin S. ; Johnson, Don ; Marrs, Brock ; Andrews, Rodney ; Poh, Churn ; Gharaibeh, Belal ; Saito, Kozo ; Anderson, Kimberly W. ; Hilt, J. Zach</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4018-b0d8c8a02b78a0f9882fac2c787973d1cbe1cd9d81568c4570f96140b9323873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Biological and medical sciences</topic><topic>carbon nanotubes</topic><topic>Composites</topic><topic>Drug delivery systems</topic><topic>Exact sciences and technology</topic><topic>Forms of application and semi-finished materials</topic><topic>Heating</topic><topic>Hydrogels</topic><topic>Medical sciences</topic><topic>Nanocomposites</topic><topic>Nanotubes</topic><topic>Polymer industry, paints, wood</topic><topic>Radio frequencies</topic><topic>Radiofrequency</topic><topic>Reproduction</topic><topic>Resultants</topic><topic>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</topic><topic>Technology of polymers</topic><topic>Technology. Biomaterials. Equipments</topic><topic>temperature responsive</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Satarkar, Nitin S.</creatorcontrib><creatorcontrib>Johnson, Don</creatorcontrib><creatorcontrib>Marrs, Brock</creatorcontrib><creatorcontrib>Andrews, Rodney</creatorcontrib><creatorcontrib>Poh, Churn</creatorcontrib><creatorcontrib>Gharaibeh, Belal</creatorcontrib><creatorcontrib>Saito, Kozo</creatorcontrib><creatorcontrib>Anderson, Kimberly W.</creatorcontrib><creatorcontrib>Hilt, J. Zach</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Satarkar, Nitin S.</au><au>Johnson, Don</au><au>Marrs, Brock</au><au>Andrews, Rodney</au><au>Poh, Churn</au><au>Gharaibeh, Belal</au><au>Saito, Kozo</au><au>Anderson, Kimberly W.</au><au>Hilt, J. Zach</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogel-MWCNT nanocomposites: Synthesis, characterization, and heating with radiofrequency fields</atitle><jtitle>Journal of applied polymer science</jtitle><addtitle>J. Appl. Polym. Sci</addtitle><date>2010-08-01</date><risdate>2010</risdate><volume>117</volume><issue>3</issue><spage>1813</spage><epage>1819</epage><pages>1813-1819</pages><issn>0021-8995</issn><issn>1097-4628</issn><eissn>1097-4628</eissn><coden>JAPNAB</coden><abstract>Hydrogel nanocomposites are attractive biomaterials for numerous applications including tissue engineering, drug delivery, cancer treatment, sensors, and actuators. Here we present a nanocomposite of multiwalled carbon nanotubes (MWCNT) and temperature responsive N‐isopropylacrylamide hydrogels. The lower critical solution temperature (LCST) of the nanocomposites was tailored for physiological applications by the addition of varying amounts of acrylamide (AAm). The addition of nanotubes contributed to interesting properties, including tailorability of temperature responsive swelling and mechanical strength of the resultant nanocomposites. The mechanical properties of the nanocomposites were studied over a range of temperatures (25–55°C) to characterize the effect of nanotube addition. A radiofrequency (RF) field of 13.56 MHz was applied to the nanocomposite discs, and the resultant heating was characterized using infrared thermography. This is the first report on the use of RF to remotely heat MWCNT‐hydrogel nanocomposites. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/app.32138</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8995
ispartof Journal of applied polymer science, 2010-08, Vol.117 (3), p.1813-1819
issn 0021-8995
1097-4628
1097-4628
language eng
recordid cdi_proquest_miscellaneous_901653954
source Wiley Online Library All Journals
subjects Applied sciences
Biological and medical sciences
carbon nanotubes
Composites
Drug delivery systems
Exact sciences and technology
Forms of application and semi-finished materials
Heating
Hydrogels
Medical sciences
Nanocomposites
Nanotubes
Polymer industry, paints, wood
Radio frequencies
Radiofrequency
Reproduction
Resultants
Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases
Technology of polymers
Technology. Biomaterials. Equipments
temperature responsive
title Hydrogel-MWCNT nanocomposites: Synthesis, characterization, and heating with radiofrequency fields
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T13%3A57%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogel-MWCNT%20nanocomposites:%20Synthesis,%20characterization,%20and%20heating%20with%20radiofrequency%20fields&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Satarkar,%20Nitin%20S.&rft.date=2010-08-01&rft.volume=117&rft.issue=3&rft.spage=1813&rft.epage=1819&rft.pages=1813-1819&rft.issn=0021-8995&rft.eissn=1097-4628&rft.coden=JAPNAB&rft_id=info:doi/10.1002/app.32138&rft_dat=%3Cproquest_cross%3E896233070%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=896233070&rft_id=info:pmid/&rfr_iscdi=true