Hydrogel-MWCNT nanocomposites: Synthesis, characterization, and heating with radiofrequency fields
Hydrogel nanocomposites are attractive biomaterials for numerous applications including tissue engineering, drug delivery, cancer treatment, sensors, and actuators. Here we present a nanocomposite of multiwalled carbon nanotubes (MWCNT) and temperature responsive N‐isopropylacrylamide hydrogels. The...
Gespeichert in:
Veröffentlicht in: | Journal of applied polymer science 2010-08, Vol.117 (3), p.1813-1819 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1819 |
---|---|
container_issue | 3 |
container_start_page | 1813 |
container_title | Journal of applied polymer science |
container_volume | 117 |
creator | Satarkar, Nitin S. Johnson, Don Marrs, Brock Andrews, Rodney Poh, Churn Gharaibeh, Belal Saito, Kozo Anderson, Kimberly W. Hilt, J. Zach |
description | Hydrogel nanocomposites are attractive biomaterials for numerous applications including tissue engineering, drug delivery, cancer treatment, sensors, and actuators. Here we present a nanocomposite of multiwalled carbon nanotubes (MWCNT) and temperature responsive N‐isopropylacrylamide hydrogels. The lower critical solution temperature (LCST) of the nanocomposites was tailored for physiological applications by the addition of varying amounts of acrylamide (AAm). The addition of nanotubes contributed to interesting properties, including tailorability of temperature responsive swelling and mechanical strength of the resultant nanocomposites. The mechanical properties of the nanocomposites were studied over a range of temperatures (25–55°C) to characterize the effect of nanotube addition. A radiofrequency (RF) field of 13.56 MHz was applied to the nanocomposite discs, and the resultant heating was characterized using infrared thermography. This is the first report on the use of RF to remotely heat MWCNT‐hydrogel nanocomposites. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 |
doi_str_mv | 10.1002/app.32138 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901653954</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>896233070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4018-b0d8c8a02b78a0f9882fac2c787973d1cbe1cd9d81568c4570f96140b9323873</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK4e_Ae9iAh2zUfbJN6kqCv4hS7oLaRp6ka7SU0qWn-90VVv4hxmGOZ534EXgG0EJwhCfCC7bkIwImwFjBDkNM0KzFbBKN5QyjjP18FGCI8QIpTDYgSq6VB796Db9OKuvJwlVlqn3KJzwfQ6HCa3g-3nOpiwn6i59FL12pt32Rtn9xNp62Su42IfklfTzxMva-Mar59ftFVD0hjd1mETrDWyDXrre47B7OR4Vk7T86vTs_LoPFUZRCytYM0UkxBXNPaGM4YbqbCijHJKaqQqjVTNa4bygqksp5EpUAYrTjBhlIzB7tK28y7-D71YmKB020qr3UsQHKIiJzzP_iUZLzAhkMJI7i1J5V0IXjei82Yh_SAQFJ95i5i3-Mo7sjvfrjIo2TZeWmXCrwBjxjISawwOltyrafXwt6E4ur7-cU6XChN6_farkP5JFJTQXNxdnoqyvLm_QOReMPIB2Dyd8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>896233070</pqid></control><display><type>article</type><title>Hydrogel-MWCNT nanocomposites: Synthesis, characterization, and heating with radiofrequency fields</title><source>Wiley Online Library All Journals</source><creator>Satarkar, Nitin S. ; Johnson, Don ; Marrs, Brock ; Andrews, Rodney ; Poh, Churn ; Gharaibeh, Belal ; Saito, Kozo ; Anderson, Kimberly W. ; Hilt, J. Zach</creator><creatorcontrib>Satarkar, Nitin S. ; Johnson, Don ; Marrs, Brock ; Andrews, Rodney ; Poh, Churn ; Gharaibeh, Belal ; Saito, Kozo ; Anderson, Kimberly W. ; Hilt, J. Zach</creatorcontrib><description>Hydrogel nanocomposites are attractive biomaterials for numerous applications including tissue engineering, drug delivery, cancer treatment, sensors, and actuators. Here we present a nanocomposite of multiwalled carbon nanotubes (MWCNT) and temperature responsive N‐isopropylacrylamide hydrogels. The lower critical solution temperature (LCST) of the nanocomposites was tailored for physiological applications by the addition of varying amounts of acrylamide (AAm). The addition of nanotubes contributed to interesting properties, including tailorability of temperature responsive swelling and mechanical strength of the resultant nanocomposites. The mechanical properties of the nanocomposites were studied over a range of temperatures (25–55°C) to characterize the effect of nanotube addition. A radiofrequency (RF) field of 13.56 MHz was applied to the nanocomposite discs, and the resultant heating was characterized using infrared thermography. This is the first report on the use of RF to remotely heat MWCNT‐hydrogel nanocomposites. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010</description><identifier>ISSN: 0021-8995</identifier><identifier>ISSN: 1097-4628</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.32138</identifier><identifier>CODEN: JAPNAB</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Biological and medical sciences ; carbon nanotubes ; Composites ; Drug delivery systems ; Exact sciences and technology ; Forms of application and semi-finished materials ; Heating ; Hydrogels ; Medical sciences ; Nanocomposites ; Nanotubes ; Polymer industry, paints, wood ; Radio frequencies ; Radiofrequency ; Reproduction ; Resultants ; Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases ; Technology of polymers ; Technology. Biomaterials. Equipments ; temperature responsive</subject><ispartof>Journal of applied polymer science, 2010-08, Vol.117 (3), p.1813-1819</ispartof><rights>Copyright © 2010 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4018-b0d8c8a02b78a0f9882fac2c787973d1cbe1cd9d81568c4570f96140b9323873</citedby><cites>FETCH-LOGICAL-c4018-b0d8c8a02b78a0f9882fac2c787973d1cbe1cd9d81568c4570f96140b9323873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fapp.32138$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fapp.32138$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22884333$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Satarkar, Nitin S.</creatorcontrib><creatorcontrib>Johnson, Don</creatorcontrib><creatorcontrib>Marrs, Brock</creatorcontrib><creatorcontrib>Andrews, Rodney</creatorcontrib><creatorcontrib>Poh, Churn</creatorcontrib><creatorcontrib>Gharaibeh, Belal</creatorcontrib><creatorcontrib>Saito, Kozo</creatorcontrib><creatorcontrib>Anderson, Kimberly W.</creatorcontrib><creatorcontrib>Hilt, J. Zach</creatorcontrib><title>Hydrogel-MWCNT nanocomposites: Synthesis, characterization, and heating with radiofrequency fields</title><title>Journal of applied polymer science</title><addtitle>J. Appl. Polym. Sci</addtitle><description>Hydrogel nanocomposites are attractive biomaterials for numerous applications including tissue engineering, drug delivery, cancer treatment, sensors, and actuators. Here we present a nanocomposite of multiwalled carbon nanotubes (MWCNT) and temperature responsive N‐isopropylacrylamide hydrogels. The lower critical solution temperature (LCST) of the nanocomposites was tailored for physiological applications by the addition of varying amounts of acrylamide (AAm). The addition of nanotubes contributed to interesting properties, including tailorability of temperature responsive swelling and mechanical strength of the resultant nanocomposites. The mechanical properties of the nanocomposites were studied over a range of temperatures (25–55°C) to characterize the effect of nanotube addition. A radiofrequency (RF) field of 13.56 MHz was applied to the nanocomposite discs, and the resultant heating was characterized using infrared thermography. This is the first report on the use of RF to remotely heat MWCNT‐hydrogel nanocomposites. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010</description><subject>Applied sciences</subject><subject>Biological and medical sciences</subject><subject>carbon nanotubes</subject><subject>Composites</subject><subject>Drug delivery systems</subject><subject>Exact sciences and technology</subject><subject>Forms of application and semi-finished materials</subject><subject>Heating</subject><subject>Hydrogels</subject><subject>Medical sciences</subject><subject>Nanocomposites</subject><subject>Nanotubes</subject><subject>Polymer industry, paints, wood</subject><subject>Radio frequencies</subject><subject>Radiofrequency</subject><subject>Reproduction</subject><subject>Resultants</subject><subject>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</subject><subject>Technology of polymers</subject><subject>Technology. Biomaterials. Equipments</subject><subject>temperature responsive</subject><issn>0021-8995</issn><issn>1097-4628</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK4e_Ae9iAh2zUfbJN6kqCv4hS7oLaRp6ka7SU0qWn-90VVv4hxmGOZ534EXgG0EJwhCfCC7bkIwImwFjBDkNM0KzFbBKN5QyjjP18FGCI8QIpTDYgSq6VB796Db9OKuvJwlVlqn3KJzwfQ6HCa3g-3nOpiwn6i59FL12pt32Rtn9xNp62Su42IfklfTzxMva-Mar59ftFVD0hjd1mETrDWyDXrre47B7OR4Vk7T86vTs_LoPFUZRCytYM0UkxBXNPaGM4YbqbCijHJKaqQqjVTNa4bygqksp5EpUAYrTjBhlIzB7tK28y7-D71YmKB020qr3UsQHKIiJzzP_iUZLzAhkMJI7i1J5V0IXjei82Yh_SAQFJ95i5i3-Mo7sjvfrjIo2TZeWmXCrwBjxjISawwOltyrafXwt6E4ur7-cU6XChN6_farkP5JFJTQXNxdnoqyvLm_QOReMPIB2Dyd8g</recordid><startdate>20100801</startdate><enddate>20100801</enddate><creator>Satarkar, Nitin S.</creator><creator>Johnson, Don</creator><creator>Marrs, Brock</creator><creator>Andrews, Rodney</creator><creator>Poh, Churn</creator><creator>Gharaibeh, Belal</creator><creator>Saito, Kozo</creator><creator>Anderson, Kimberly W.</creator><creator>Hilt, J. Zach</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20100801</creationdate><title>Hydrogel-MWCNT nanocomposites: Synthesis, characterization, and heating with radiofrequency fields</title><author>Satarkar, Nitin S. ; Johnson, Don ; Marrs, Brock ; Andrews, Rodney ; Poh, Churn ; Gharaibeh, Belal ; Saito, Kozo ; Anderson, Kimberly W. ; Hilt, J. Zach</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4018-b0d8c8a02b78a0f9882fac2c787973d1cbe1cd9d81568c4570f96140b9323873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Biological and medical sciences</topic><topic>carbon nanotubes</topic><topic>Composites</topic><topic>Drug delivery systems</topic><topic>Exact sciences and technology</topic><topic>Forms of application and semi-finished materials</topic><topic>Heating</topic><topic>Hydrogels</topic><topic>Medical sciences</topic><topic>Nanocomposites</topic><topic>Nanotubes</topic><topic>Polymer industry, paints, wood</topic><topic>Radio frequencies</topic><topic>Radiofrequency</topic><topic>Reproduction</topic><topic>Resultants</topic><topic>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</topic><topic>Technology of polymers</topic><topic>Technology. Biomaterials. Equipments</topic><topic>temperature responsive</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Satarkar, Nitin S.</creatorcontrib><creatorcontrib>Johnson, Don</creatorcontrib><creatorcontrib>Marrs, Brock</creatorcontrib><creatorcontrib>Andrews, Rodney</creatorcontrib><creatorcontrib>Poh, Churn</creatorcontrib><creatorcontrib>Gharaibeh, Belal</creatorcontrib><creatorcontrib>Saito, Kozo</creatorcontrib><creatorcontrib>Anderson, Kimberly W.</creatorcontrib><creatorcontrib>Hilt, J. Zach</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Satarkar, Nitin S.</au><au>Johnson, Don</au><au>Marrs, Brock</au><au>Andrews, Rodney</au><au>Poh, Churn</au><au>Gharaibeh, Belal</au><au>Saito, Kozo</au><au>Anderson, Kimberly W.</au><au>Hilt, J. Zach</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogel-MWCNT nanocomposites: Synthesis, characterization, and heating with radiofrequency fields</atitle><jtitle>Journal of applied polymer science</jtitle><addtitle>J. Appl. Polym. Sci</addtitle><date>2010-08-01</date><risdate>2010</risdate><volume>117</volume><issue>3</issue><spage>1813</spage><epage>1819</epage><pages>1813-1819</pages><issn>0021-8995</issn><issn>1097-4628</issn><eissn>1097-4628</eissn><coden>JAPNAB</coden><abstract>Hydrogel nanocomposites are attractive biomaterials for numerous applications including tissue engineering, drug delivery, cancer treatment, sensors, and actuators. Here we present a nanocomposite of multiwalled carbon nanotubes (MWCNT) and temperature responsive N‐isopropylacrylamide hydrogels. The lower critical solution temperature (LCST) of the nanocomposites was tailored for physiological applications by the addition of varying amounts of acrylamide (AAm). The addition of nanotubes contributed to interesting properties, including tailorability of temperature responsive swelling and mechanical strength of the resultant nanocomposites. The mechanical properties of the nanocomposites were studied over a range of temperatures (25–55°C) to characterize the effect of nanotube addition. A radiofrequency (RF) field of 13.56 MHz was applied to the nanocomposite discs, and the resultant heating was characterized using infrared thermography. This is the first report on the use of RF to remotely heat MWCNT‐hydrogel nanocomposites. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/app.32138</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8995 |
ispartof | Journal of applied polymer science, 2010-08, Vol.117 (3), p.1813-1819 |
issn | 0021-8995 1097-4628 1097-4628 |
language | eng |
recordid | cdi_proquest_miscellaneous_901653954 |
source | Wiley Online Library All Journals |
subjects | Applied sciences Biological and medical sciences carbon nanotubes Composites Drug delivery systems Exact sciences and technology Forms of application and semi-finished materials Heating Hydrogels Medical sciences Nanocomposites Nanotubes Polymer industry, paints, wood Radio frequencies Radiofrequency Reproduction Resultants Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases Technology of polymers Technology. Biomaterials. Equipments temperature responsive |
title | Hydrogel-MWCNT nanocomposites: Synthesis, characterization, and heating with radiofrequency fields |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T13%3A57%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogel-MWCNT%20nanocomposites:%20Synthesis,%20characterization,%20and%20heating%20with%20radiofrequency%20fields&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Satarkar,%20Nitin%20S.&rft.date=2010-08-01&rft.volume=117&rft.issue=3&rft.spage=1813&rft.epage=1819&rft.pages=1813-1819&rft.issn=0021-8995&rft.eissn=1097-4628&rft.coden=JAPNAB&rft_id=info:doi/10.1002/app.32138&rft_dat=%3Cproquest_cross%3E896233070%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=896233070&rft_id=info:pmid/&rfr_iscdi=true |