Water Vapor Permeability of Poly(L-lactide)/Poly(D-lactide) Stereocomplexes

PLLA/PDLA blend films with only stereocomplex crystallites as a crystalline species together with pure PLLA and PDLA films with only homo‐crystallites as a crystalline species were prepared, and the effects of enantiomeric polymer blending, crystalline species, and crystallinity on the water vapor p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecular materials and engineering 2010-08, Vol.295 (8), p.709-715
Hauptverfasser: Tsuji, Hideto, Tsuruno, Tomonori
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 715
container_issue 8
container_start_page 709
container_title Macromolecular materials and engineering
container_volume 295
creator Tsuji, Hideto
Tsuruno, Tomonori
description PLLA/PDLA blend films with only stereocomplex crystallites as a crystalline species together with pure PLLA and PDLA films with only homo‐crystallites as a crystalline species were prepared, and the effects of enantiomeric polymer blending, crystalline species, and crystallinity on the water vapor permeability were investigated. The WVT coefficient P of PLLA/PDLA blend films was 14–23% lower than that of pure PLLA and PDLA films in the crystallinity Xc range of 0–30%. Amorphous PLLA/PDLA blend films have a much lower P than pure PLLA and PDLA films. The dependence of P on Xc for blend films was stronger for Xc = 0–30% than for Xc = 30–100%. This dependence is discussed using the Nielsen model and the concept of “restricted” (or “restrained”) and “free” amorphous regions. The water vapor permeability of PLLA or PDLA could be effectively reduced (by 14–23%) by equimolar polymer blending of PLLA and PDLA. Interestingly, the higher barrier property of PLLA/PDLA blends was observed even when they were amorphous. The effect of stereocomplex crystallinity of PLLA/PDLA blends on the WVP was investigated in detail, together with that of homo‐crystallinity of pure PLLA and PDLA.
doi_str_mv 10.1002/mame.201000071
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901653674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>901653674</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4551-2be1dd01270aecb8038d7f3892f5cfcc8f1ad62d2f442e7cc287f083f017976b3</originalsourceid><addsrcrecordid>eNqFkL1PwzAQxSMEElBYmbMgYEg520kcj6gtBVGgEh9lsxznLAWcJtipaP97QosqNqZ7J73fu9MLghMCfQJALytVYZ9CpwE42QkOSMxERCGJd9c6i3gs6H5w6P07AOGZYAfB3Uy16MJX1dQunKKrUOWlLdtVWJtwWtvV-SSySrdlgReX63243cOnDsVa11VjcYn-KNgzyno8_p294OV69Dy4iSaP49vB1STScZKQiOZIigII5aBQ5xmwrOCGZYKaRButM0NUkdKCmjimyLWmGTeQMdP9LHias15wtsltXP25QN_KqvQarVVzrBdeCiBpwlIed87-xqld7b1DIxtXVsqtJAH5U5r8KU1uS-uA099o5bWyxqm5Lv2WogwEAZZ0PrHxfZUWV_-kyvur-9HfG9GGLX2Lyy2r3IdMOeOJnD2MpXh7E8OET-UD-wYEeIwC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901653674</pqid></control><display><type>article</type><title>Water Vapor Permeability of Poly(L-lactide)/Poly(D-lactide) Stereocomplexes</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Tsuji, Hideto ; Tsuruno, Tomonori</creator><creatorcontrib>Tsuji, Hideto ; Tsuruno, Tomonori</creatorcontrib><description>PLLA/PDLA blend films with only stereocomplex crystallites as a crystalline species together with pure PLLA and PDLA films with only homo‐crystallites as a crystalline species were prepared, and the effects of enantiomeric polymer blending, crystalline species, and crystallinity on the water vapor permeability were investigated. The WVT coefficient P of PLLA/PDLA blend films was 14–23% lower than that of pure PLLA and PDLA films in the crystallinity Xc range of 0–30%. Amorphous PLLA/PDLA blend films have a much lower P than pure PLLA and PDLA films. The dependence of P on Xc for blend films was stronger for Xc = 0–30% than for Xc = 30–100%. This dependence is discussed using the Nielsen model and the concept of “restricted” (or “restrained”) and “free” amorphous regions. The water vapor permeability of PLLA or PDLA could be effectively reduced (by 14–23%) by equimolar polymer blending of PLLA and PDLA. Interestingly, the higher barrier property of PLLA/PDLA blends was observed even when they were amorphous. The effect of stereocomplex crystallinity of PLLA/PDLA blends on the WVP was investigated in detail, together with that of homo‐crystallinity of pure PLLA and PDLA.</description><identifier>ISSN: 1438-7492</identifier><identifier>ISSN: 1439-2054</identifier><identifier>EISSN: 1439-2054</identifier><identifier>DOI: 10.1002/mame.201000071</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Applied sciences ; biodegradable polyesters ; Blending ; Blends ; Crystal structure ; Crystallinity ; Crystallites ; crystallization ; Exact sciences and technology ; Miscellaneous ; Organic polymers ; Permeability ; Physicochemistry of polymers ; poly(lactic acid)s ; Properties and characterization ; Stereocomplexes ; Water vapor ; water vapor permeation</subject><ispartof>Macromolecular materials and engineering, 2010-08, Vol.295 (8), p.709-715</ispartof><rights>Copyright © 2010 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4551-2be1dd01270aecb8038d7f3892f5cfcc8f1ad62d2f442e7cc287f083f017976b3</citedby><cites>FETCH-LOGICAL-c4551-2be1dd01270aecb8038d7f3892f5cfcc8f1ad62d2f442e7cc287f083f017976b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmame.201000071$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmame.201000071$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23091035$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tsuji, Hideto</creatorcontrib><creatorcontrib>Tsuruno, Tomonori</creatorcontrib><title>Water Vapor Permeability of Poly(L-lactide)/Poly(D-lactide) Stereocomplexes</title><title>Macromolecular materials and engineering</title><addtitle>Macromol. Mater. Eng</addtitle><description>PLLA/PDLA blend films with only stereocomplex crystallites as a crystalline species together with pure PLLA and PDLA films with only homo‐crystallites as a crystalline species were prepared, and the effects of enantiomeric polymer blending, crystalline species, and crystallinity on the water vapor permeability were investigated. The WVT coefficient P of PLLA/PDLA blend films was 14–23% lower than that of pure PLLA and PDLA films in the crystallinity Xc range of 0–30%. Amorphous PLLA/PDLA blend films have a much lower P than pure PLLA and PDLA films. The dependence of P on Xc for blend films was stronger for Xc = 0–30% than for Xc = 30–100%. This dependence is discussed using the Nielsen model and the concept of “restricted” (or “restrained”) and “free” amorphous regions. The water vapor permeability of PLLA or PDLA could be effectively reduced (by 14–23%) by equimolar polymer blending of PLLA and PDLA. Interestingly, the higher barrier property of PLLA/PDLA blends was observed even when they were amorphous. The effect of stereocomplex crystallinity of PLLA/PDLA blends on the WVP was investigated in detail, together with that of homo‐crystallinity of pure PLLA and PDLA.</description><subject>Applied sciences</subject><subject>biodegradable polyesters</subject><subject>Blending</subject><subject>Blends</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Crystallites</subject><subject>crystallization</subject><subject>Exact sciences and technology</subject><subject>Miscellaneous</subject><subject>Organic polymers</subject><subject>Permeability</subject><subject>Physicochemistry of polymers</subject><subject>poly(lactic acid)s</subject><subject>Properties and characterization</subject><subject>Stereocomplexes</subject><subject>Water vapor</subject><subject>water vapor permeation</subject><issn>1438-7492</issn><issn>1439-2054</issn><issn>1439-2054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkL1PwzAQxSMEElBYmbMgYEg520kcj6gtBVGgEh9lsxznLAWcJtipaP97QosqNqZ7J73fu9MLghMCfQJALytVYZ9CpwE42QkOSMxERCGJd9c6i3gs6H5w6P07AOGZYAfB3Uy16MJX1dQunKKrUOWlLdtVWJtwWtvV-SSySrdlgReX63243cOnDsVa11VjcYn-KNgzyno8_p294OV69Dy4iSaP49vB1STScZKQiOZIigII5aBQ5xmwrOCGZYKaRButM0NUkdKCmjimyLWmGTeQMdP9LHias15wtsltXP25QN_KqvQarVVzrBdeCiBpwlIed87-xqld7b1DIxtXVsqtJAH5U5r8KU1uS-uA099o5bWyxqm5Lv2WogwEAZZ0PrHxfZUWV_-kyvur-9HfG9GGLX2Lyy2r3IdMOeOJnD2MpXh7E8OET-UD-wYEeIwC</recordid><startdate>20100811</startdate><enddate>20100811</enddate><creator>Tsuji, Hideto</creator><creator>Tsuruno, Tomonori</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20100811</creationdate><title>Water Vapor Permeability of Poly(L-lactide)/Poly(D-lactide) Stereocomplexes</title><author>Tsuji, Hideto ; Tsuruno, Tomonori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4551-2be1dd01270aecb8038d7f3892f5cfcc8f1ad62d2f442e7cc287f083f017976b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>biodegradable polyesters</topic><topic>Blending</topic><topic>Blends</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Crystallites</topic><topic>crystallization</topic><topic>Exact sciences and technology</topic><topic>Miscellaneous</topic><topic>Organic polymers</topic><topic>Permeability</topic><topic>Physicochemistry of polymers</topic><topic>poly(lactic acid)s</topic><topic>Properties and characterization</topic><topic>Stereocomplexes</topic><topic>Water vapor</topic><topic>water vapor permeation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsuji, Hideto</creatorcontrib><creatorcontrib>Tsuruno, Tomonori</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Macromolecular materials and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsuji, Hideto</au><au>Tsuruno, Tomonori</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Water Vapor Permeability of Poly(L-lactide)/Poly(D-lactide) Stereocomplexes</atitle><jtitle>Macromolecular materials and engineering</jtitle><addtitle>Macromol. Mater. Eng</addtitle><date>2010-08-11</date><risdate>2010</risdate><volume>295</volume><issue>8</issue><spage>709</spage><epage>715</epage><pages>709-715</pages><issn>1438-7492</issn><issn>1439-2054</issn><eissn>1439-2054</eissn><abstract>PLLA/PDLA blend films with only stereocomplex crystallites as a crystalline species together with pure PLLA and PDLA films with only homo‐crystallites as a crystalline species were prepared, and the effects of enantiomeric polymer blending, crystalline species, and crystallinity on the water vapor permeability were investigated. The WVT coefficient P of PLLA/PDLA blend films was 14–23% lower than that of pure PLLA and PDLA films in the crystallinity Xc range of 0–30%. Amorphous PLLA/PDLA blend films have a much lower P than pure PLLA and PDLA films. The dependence of P on Xc for blend films was stronger for Xc = 0–30% than for Xc = 30–100%. This dependence is discussed using the Nielsen model and the concept of “restricted” (or “restrained”) and “free” amorphous regions. The water vapor permeability of PLLA or PDLA could be effectively reduced (by 14–23%) by equimolar polymer blending of PLLA and PDLA. Interestingly, the higher barrier property of PLLA/PDLA blends was observed even when they were amorphous. The effect of stereocomplex crystallinity of PLLA/PDLA blends on the WVP was investigated in detail, together with that of homo‐crystallinity of pure PLLA and PDLA.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/mame.201000071</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1438-7492
ispartof Macromolecular materials and engineering, 2010-08, Vol.295 (8), p.709-715
issn 1438-7492
1439-2054
1439-2054
language eng
recordid cdi_proquest_miscellaneous_901653674
source Wiley Online Library Journals Frontfile Complete
subjects Applied sciences
biodegradable polyesters
Blending
Blends
Crystal structure
Crystallinity
Crystallites
crystallization
Exact sciences and technology
Miscellaneous
Organic polymers
Permeability
Physicochemistry of polymers
poly(lactic acid)s
Properties and characterization
Stereocomplexes
Water vapor
water vapor permeation
title Water Vapor Permeability of Poly(L-lactide)/Poly(D-lactide) Stereocomplexes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A12%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Water%20Vapor%20Permeability%20of%20Poly(L-lactide)/Poly(D-lactide)%20Stereocomplexes&rft.jtitle=Macromolecular%20materials%20and%20engineering&rft.au=Tsuji,%20Hideto&rft.date=2010-08-11&rft.volume=295&rft.issue=8&rft.spage=709&rft.epage=715&rft.pages=709-715&rft.issn=1438-7492&rft.eissn=1439-2054&rft_id=info:doi/10.1002/mame.201000071&rft_dat=%3Cproquest_cross%3E901653674%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=901653674&rft_id=info:pmid/&rfr_iscdi=true