Diffusion maps for edge-aware image editing

Edge-aware operations, such as edge-preserving smoothing and edge-aware interpolation, require assessing the degree of similarity between pairs of pixels, typically defined as a simple monotonic function of the Euclidean distance between pixel values in some feature space. In this work we introduce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on graphics 2010-12, Vol.29 (6)
Hauptverfasser: Farbman, Zeev, Fattal, Raanan, Lischinski, Dani
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title ACM transactions on graphics
container_volume 29
creator Farbman, Zeev
Fattal, Raanan
Lischinski, Dani
description Edge-aware operations, such as edge-preserving smoothing and edge-aware interpolation, require assessing the degree of similarity between pairs of pixels, typically defined as a simple monotonic function of the Euclidean distance between pixel values in some feature space. In this work we introduce the idea of replacing these Euclidean distances with diffusion distances, which better account for the global distribution of pixels in their feature space. These distances are approximated using diffusion maps: a set of the dominant eigenvectors of a large affinity matrix, which may be computed efficiently by sampling a small number of matrix columns (the Nystrom method). We demonstrate the benefits of using diffusion distances in a variety of image editing contexts, and explore the use of diffusion maps as a tool for facilitating the creation of complex selection masks. Finally, we present a new analysis that establishes a connection between the spatial interaction range between two pixels, and the number of samples necessary for accurate Nystrom approximations.
doi_str_mv 10.1145/1360612.1360639
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_901653076</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>901653076</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_9016530763</originalsourceid><addsrcrecordid>eNqNyrsOgkAQQNEpNBEfte12FgaccWEJtY_4AfZko7NkDbDIQPx9jfEDrE5ycwHWhAlRmu1IGzS0T77qYgIR5hpj1EgzmIs8ENGkqYlge_TOjeJDqxrbiXKhV3yvOLYv27Pyja34E_zg22oJU2dr4dXPBWzOp-vhEnd9eI4sQ9l4uXFd25bDKGWBZDKNudH_n2_T8Tid</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901653076</pqid></control><display><type>article</type><title>Diffusion maps for edge-aware image editing</title><source>ACM Digital Library Complete</source><creator>Farbman, Zeev ; Fattal, Raanan ; Lischinski, Dani</creator><creatorcontrib>Farbman, Zeev ; Fattal, Raanan ; Lischinski, Dani</creatorcontrib><description>Edge-aware operations, such as edge-preserving smoothing and edge-aware interpolation, require assessing the degree of similarity between pairs of pixels, typically defined as a simple monotonic function of the Euclidean distance between pixel values in some feature space. In this work we introduce the idea of replacing these Euclidean distances with diffusion distances, which better account for the global distribution of pixels in their feature space. These distances are approximated using diffusion maps: a set of the dominant eigenvectors of a large affinity matrix, which may be computed efficiently by sampling a small number of matrix columns (the Nystrom method). We demonstrate the benefits of using diffusion distances in a variety of image editing contexts, and explore the use of diffusion maps as a tool for facilitating the creation of complex selection masks. Finally, we present a new analysis that establishes a connection between the spatial interaction range between two pixels, and the number of samples necessary for accurate Nystrom approximations.</description><identifier>ISSN: 0730-0301</identifier><identifier>DOI: 10.1145/1360612.1360639</identifier><language>eng</language><subject>Approximation ; Diffusion ; Editing ; Pixels ; Sampling</subject><ispartof>ACM transactions on graphics, 2010-12, Vol.29 (6)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Farbman, Zeev</creatorcontrib><creatorcontrib>Fattal, Raanan</creatorcontrib><creatorcontrib>Lischinski, Dani</creatorcontrib><title>Diffusion maps for edge-aware image editing</title><title>ACM transactions on graphics</title><description>Edge-aware operations, such as edge-preserving smoothing and edge-aware interpolation, require assessing the degree of similarity between pairs of pixels, typically defined as a simple monotonic function of the Euclidean distance between pixel values in some feature space. In this work we introduce the idea of replacing these Euclidean distances with diffusion distances, which better account for the global distribution of pixels in their feature space. These distances are approximated using diffusion maps: a set of the dominant eigenvectors of a large affinity matrix, which may be computed efficiently by sampling a small number of matrix columns (the Nystrom method). We demonstrate the benefits of using diffusion distances in a variety of image editing contexts, and explore the use of diffusion maps as a tool for facilitating the creation of complex selection masks. Finally, we present a new analysis that establishes a connection between the spatial interaction range between two pixels, and the number of samples necessary for accurate Nystrom approximations.</description><subject>Approximation</subject><subject>Diffusion</subject><subject>Editing</subject><subject>Pixels</subject><subject>Sampling</subject><issn>0730-0301</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNyrsOgkAQQNEpNBEfte12FgaccWEJtY_4AfZko7NkDbDIQPx9jfEDrE5ycwHWhAlRmu1IGzS0T77qYgIR5hpj1EgzmIs8ENGkqYlge_TOjeJDqxrbiXKhV3yvOLYv27Pyja34E_zg22oJU2dr4dXPBWzOp-vhEnd9eI4sQ9l4uXFd25bDKGWBZDKNudH_n2_T8Tid</recordid><startdate>20101201</startdate><enddate>20101201</enddate><creator>Farbman, Zeev</creator><creator>Fattal, Raanan</creator><creator>Lischinski, Dani</creator><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20101201</creationdate><title>Diffusion maps for edge-aware image editing</title><author>Farbman, Zeev ; Fattal, Raanan ; Lischinski, Dani</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_9016530763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Approximation</topic><topic>Diffusion</topic><topic>Editing</topic><topic>Pixels</topic><topic>Sampling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farbman, Zeev</creatorcontrib><creatorcontrib>Fattal, Raanan</creatorcontrib><creatorcontrib>Lischinski, Dani</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ACM transactions on graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farbman, Zeev</au><au>Fattal, Raanan</au><au>Lischinski, Dani</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diffusion maps for edge-aware image editing</atitle><jtitle>ACM transactions on graphics</jtitle><date>2010-12-01</date><risdate>2010</risdate><volume>29</volume><issue>6</issue><issn>0730-0301</issn><abstract>Edge-aware operations, such as edge-preserving smoothing and edge-aware interpolation, require assessing the degree of similarity between pairs of pixels, typically defined as a simple monotonic function of the Euclidean distance between pixel values in some feature space. In this work we introduce the idea of replacing these Euclidean distances with diffusion distances, which better account for the global distribution of pixels in their feature space. These distances are approximated using diffusion maps: a set of the dominant eigenvectors of a large affinity matrix, which may be computed efficiently by sampling a small number of matrix columns (the Nystrom method). We demonstrate the benefits of using diffusion distances in a variety of image editing contexts, and explore the use of diffusion maps as a tool for facilitating the creation of complex selection masks. Finally, we present a new analysis that establishes a connection between the spatial interaction range between two pixels, and the number of samples necessary for accurate Nystrom approximations.</abstract><doi>10.1145/1360612.1360639</doi></addata></record>
fulltext fulltext
identifier ISSN: 0730-0301
ispartof ACM transactions on graphics, 2010-12, Vol.29 (6)
issn 0730-0301
language eng
recordid cdi_proquest_miscellaneous_901653076
source ACM Digital Library Complete
subjects Approximation
Diffusion
Editing
Pixels
Sampling
title Diffusion maps for edge-aware image editing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A12%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diffusion%20maps%20for%20edge-aware%20image%20editing&rft.jtitle=ACM%20transactions%20on%20graphics&rft.au=Farbman,%20Zeev&rft.date=2010-12-01&rft.volume=29&rft.issue=6&rft.issn=0730-0301&rft_id=info:doi/10.1145/1360612.1360639&rft_dat=%3Cproquest%3E901653076%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=901653076&rft_id=info:pmid/&rfr_iscdi=true