Deuterium Enrichment of Interstellar Methanol Explained by Atom Tunneling

We calculate, down to low temperature and for different isotopes, the reaction rate constants for the hydrogen abstraction reaction H + H3COH → H2 + CH2OH/CH3O. These explain the known abundances of deuterated forms of methanol in interstellar clouds, where CH2DOH can be almost as abundant as CH3OH....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2011-10, Vol.115 (39), p.10767-10774
Hauptverfasser: Goumans, T. P. M, Kästner, Johannes
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10774
container_issue 39
container_start_page 10767
container_title The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
container_volume 115
creator Goumans, T. P. M
Kästner, Johannes
description We calculate, down to low temperature and for different isotopes, the reaction rate constants for the hydrogen abstraction reaction H + H3COH → H2 + CH2OH/CH3O. These explain the known abundances of deuterated forms of methanol in interstellar clouds, where CH2DOH can be almost as abundant as CH3OH. For abstraction from both the C- and the O-end of methanol, the barrier-crossing motion involves the movement of light hydrogen atoms. Consequently, tunneling plays a dominant role already at relatively high temperature. Our implementation of harmonic quantum transition state theory with on the fly calculation of forces and energies accounts for these tunneling effects. The results are in good agreement with previous semiclassical and quantum dynamics calculations (down to 200 K) and experimental studies (down to 295 K). Here we extend the rate calculations down to lower temperature: 30 K for abstraction from the C-end of methanol and 80 K for abstraction from the OH-group. At all temperatures, abstraction from the C-end is preferred over abstraction from the O-end, more strongly so at lower temperature. Furthermore, the tunneling behavior strongly affects the kinetic isotope effects (KIEs). D + H3COH → HD + CH2OH has a lower vibrationally adiabatic barrier than H + H3COH → H2 + CH2OH, giving rise to an inverse KIE (k H/k D < 1) at high temperature, in accordance with previous experiments and calculations. However, since tunneling is more facile for the light H atom, abstraction by H is favored over abstraction by D below ∼135 K, with a KIE k H/k D of 11.2 at 30 K. The H + D3COD → HD + CD2OD reaction is calculated to be much slower than the D + H3COH → HD + CH2OH, in agreement with low-temperature solid-state experiments, which suggests the preference for H (as opposed to D) abstraction from the C-end of methanol to be the mechanism by which interstellar methanol is deuterium-enriched.
doi_str_mv 10.1021/jp206048f
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901650559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1753521590</sourcerecordid><originalsourceid>FETCH-LOGICAL-a446t-83e9a414a52ff5593ce16348de72ba2294647d37c3347867b82a78b415eddcbe3</originalsourceid><addsrcrecordid>eNqF0c1Kw0AUBeBBFFurC19AshF1EZ3_zCxLrVqouKnrMElubEoyiTMJ2Lc3obUr0dVcho_D5VyELgm-J5iSh01DscRc5UdoTATFoaBEHPczVjoUkukROvN-gzEmjPJTNKJESakxHaPFI3QtuKKrgrl1RbquwLZBnQcL23_7FsrSuOAV2rWxdRnMv5rSFBayINkG07auglVnLZSF_ThHJ7kpPVzs3wl6f5qvZi_h8u15MZsuQ8O5bEPFQBtOuBE0z4XQLAUiGVcZRDQxlGoueZSxKGWMR0pGiaImUgknArIsTYBN0M0ut3H1Zwe-javCp8OeFurOxxoTKfCQPEG3f0oSCTY0pfH_VFCtec95T-92NHW19w7yuHFFZdw2JjgezhEfztHbq31sl1SQHeRP_z243gGT-nhTd8721f0S9A3L049j</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1529945354</pqid></control><display><type>article</type><title>Deuterium Enrichment of Interstellar Methanol Explained by Atom Tunneling</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Goumans, T. P. M ; Kästner, Johannes</creator><creatorcontrib>Goumans, T. P. M ; Kästner, Johannes</creatorcontrib><description>We calculate, down to low temperature and for different isotopes, the reaction rate constants for the hydrogen abstraction reaction H + H3COH → H2 + CH2OH/CH3O. These explain the known abundances of deuterated forms of methanol in interstellar clouds, where CH2DOH can be almost as abundant as CH3OH. For abstraction from both the C- and the O-end of methanol, the barrier-crossing motion involves the movement of light hydrogen atoms. Consequently, tunneling plays a dominant role already at relatively high temperature. Our implementation of harmonic quantum transition state theory with on the fly calculation of forces and energies accounts for these tunneling effects. The results are in good agreement with previous semiclassical and quantum dynamics calculations (down to 200 K) and experimental studies (down to 295 K). Here we extend the rate calculations down to lower temperature: 30 K for abstraction from the C-end of methanol and 80 K for abstraction from the OH-group. At all temperatures, abstraction from the C-end is preferred over abstraction from the O-end, more strongly so at lower temperature. Furthermore, the tunneling behavior strongly affects the kinetic isotope effects (KIEs). D + H3COH → HD + CH2OH has a lower vibrationally adiabatic barrier than H + H3COH → H2 + CH2OH, giving rise to an inverse KIE (k H/k D &lt; 1) at high temperature, in accordance with previous experiments and calculations. However, since tunneling is more facile for the light H atom, abstraction by H is favored over abstraction by D below ∼135 K, with a KIE k H/k D of 11.2 at 30 K. The H + D3COD → HD + CD2OD reaction is calculated to be much slower than the D + H3COH → HD + CH2OH, in agreement with low-temperature solid-state experiments, which suggests the preference for H (as opposed to D) abstraction from the C-end of methanol to be the mechanism by which interstellar methanol is deuterium-enriched.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/jp206048f</identifier><identifier>PMID: 21866902</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>A: Kinetics, Spectroscopy ; Adiabatic flow ; Clouds ; Deuteration ; Deuterium - chemistry ; Interstellar ; Isotope effect ; Mathematical analysis ; Methanol - chemistry ; Methyl alcohol ; Quantum Theory ; Temperature ; Tunneling</subject><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory, 2011-10, Vol.115 (39), p.10767-10774</ispartof><rights>Copyright © 2011 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a446t-83e9a414a52ff5593ce16348de72ba2294647d37c3347867b82a78b415eddcbe3</citedby><cites>FETCH-LOGICAL-a446t-83e9a414a52ff5593ce16348de72ba2294647d37c3347867b82a78b415eddcbe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp206048f$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp206048f$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21866902$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Goumans, T. P. M</creatorcontrib><creatorcontrib>Kästner, Johannes</creatorcontrib><title>Deuterium Enrichment of Interstellar Methanol Explained by Atom Tunneling</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>We calculate, down to low temperature and for different isotopes, the reaction rate constants for the hydrogen abstraction reaction H + H3COH → H2 + CH2OH/CH3O. These explain the known abundances of deuterated forms of methanol in interstellar clouds, where CH2DOH can be almost as abundant as CH3OH. For abstraction from both the C- and the O-end of methanol, the barrier-crossing motion involves the movement of light hydrogen atoms. Consequently, tunneling plays a dominant role already at relatively high temperature. Our implementation of harmonic quantum transition state theory with on the fly calculation of forces and energies accounts for these tunneling effects. The results are in good agreement with previous semiclassical and quantum dynamics calculations (down to 200 K) and experimental studies (down to 295 K). Here we extend the rate calculations down to lower temperature: 30 K for abstraction from the C-end of methanol and 80 K for abstraction from the OH-group. At all temperatures, abstraction from the C-end is preferred over abstraction from the O-end, more strongly so at lower temperature. Furthermore, the tunneling behavior strongly affects the kinetic isotope effects (KIEs). D + H3COH → HD + CH2OH has a lower vibrationally adiabatic barrier than H + H3COH → H2 + CH2OH, giving rise to an inverse KIE (k H/k D &lt; 1) at high temperature, in accordance with previous experiments and calculations. However, since tunneling is more facile for the light H atom, abstraction by H is favored over abstraction by D below ∼135 K, with a KIE k H/k D of 11.2 at 30 K. The H + D3COD → HD + CD2OD reaction is calculated to be much slower than the D + H3COH → HD + CH2OH, in agreement with low-temperature solid-state experiments, which suggests the preference for H (as opposed to D) abstraction from the C-end of methanol to be the mechanism by which interstellar methanol is deuterium-enriched.</description><subject>A: Kinetics, Spectroscopy</subject><subject>Adiabatic flow</subject><subject>Clouds</subject><subject>Deuteration</subject><subject>Deuterium - chemistry</subject><subject>Interstellar</subject><subject>Isotope effect</subject><subject>Mathematical analysis</subject><subject>Methanol - chemistry</subject><subject>Methyl alcohol</subject><subject>Quantum Theory</subject><subject>Temperature</subject><subject>Tunneling</subject><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0c1Kw0AUBeBBFFurC19AshF1EZ3_zCxLrVqouKnrMElubEoyiTMJ2Lc3obUr0dVcho_D5VyELgm-J5iSh01DscRc5UdoTATFoaBEHPczVjoUkukROvN-gzEmjPJTNKJESakxHaPFI3QtuKKrgrl1RbquwLZBnQcL23_7FsrSuOAV2rWxdRnMv5rSFBayINkG07auglVnLZSF_ThHJ7kpPVzs3wl6f5qvZi_h8u15MZsuQ8O5bEPFQBtOuBE0z4XQLAUiGVcZRDQxlGoueZSxKGWMR0pGiaImUgknArIsTYBN0M0ut3H1Zwe-javCp8OeFurOxxoTKfCQPEG3f0oSCTY0pfH_VFCtec95T-92NHW19w7yuHFFZdw2JjgezhEfztHbq31sl1SQHeRP_z243gGT-nhTd8721f0S9A3L049j</recordid><startdate>20111006</startdate><enddate>20111006</enddate><creator>Goumans, T. P. M</creator><creator>Kästner, Johannes</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20111006</creationdate><title>Deuterium Enrichment of Interstellar Methanol Explained by Atom Tunneling</title><author>Goumans, T. P. M ; Kästner, Johannes</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a446t-83e9a414a52ff5593ce16348de72ba2294647d37c3347867b82a78b415eddcbe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>A: Kinetics, Spectroscopy</topic><topic>Adiabatic flow</topic><topic>Clouds</topic><topic>Deuteration</topic><topic>Deuterium - chemistry</topic><topic>Interstellar</topic><topic>Isotope effect</topic><topic>Mathematical analysis</topic><topic>Methanol - chemistry</topic><topic>Methyl alcohol</topic><topic>Quantum Theory</topic><topic>Temperature</topic><topic>Tunneling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goumans, T. P. M</creatorcontrib><creatorcontrib>Kästner, Johannes</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goumans, T. P. M</au><au>Kästner, Johannes</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deuterium Enrichment of Interstellar Methanol Explained by Atom Tunneling</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2011-10-06</date><risdate>2011</risdate><volume>115</volume><issue>39</issue><spage>10767</spage><epage>10774</epage><pages>10767-10774</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>We calculate, down to low temperature and for different isotopes, the reaction rate constants for the hydrogen abstraction reaction H + H3COH → H2 + CH2OH/CH3O. These explain the known abundances of deuterated forms of methanol in interstellar clouds, where CH2DOH can be almost as abundant as CH3OH. For abstraction from both the C- and the O-end of methanol, the barrier-crossing motion involves the movement of light hydrogen atoms. Consequently, tunneling plays a dominant role already at relatively high temperature. Our implementation of harmonic quantum transition state theory with on the fly calculation of forces and energies accounts for these tunneling effects. The results are in good agreement with previous semiclassical and quantum dynamics calculations (down to 200 K) and experimental studies (down to 295 K). Here we extend the rate calculations down to lower temperature: 30 K for abstraction from the C-end of methanol and 80 K for abstraction from the OH-group. At all temperatures, abstraction from the C-end is preferred over abstraction from the O-end, more strongly so at lower temperature. Furthermore, the tunneling behavior strongly affects the kinetic isotope effects (KIEs). D + H3COH → HD + CH2OH has a lower vibrationally adiabatic barrier than H + H3COH → H2 + CH2OH, giving rise to an inverse KIE (k H/k D &lt; 1) at high temperature, in accordance with previous experiments and calculations. However, since tunneling is more facile for the light H atom, abstraction by H is favored over abstraction by D below ∼135 K, with a KIE k H/k D of 11.2 at 30 K. The H + D3COD → HD + CD2OD reaction is calculated to be much slower than the D + H3COH → HD + CH2OH, in agreement with low-temperature solid-state experiments, which suggests the preference for H (as opposed to D) abstraction from the C-end of methanol to be the mechanism by which interstellar methanol is deuterium-enriched.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>21866902</pmid><doi>10.1021/jp206048f</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1089-5639
ispartof The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2011-10, Vol.115 (39), p.10767-10774
issn 1089-5639
1520-5215
language eng
recordid cdi_proquest_miscellaneous_901650559
source MEDLINE; American Chemical Society Journals
subjects A: Kinetics, Spectroscopy
Adiabatic flow
Clouds
Deuteration
Deuterium - chemistry
Interstellar
Isotope effect
Mathematical analysis
Methanol - chemistry
Methyl alcohol
Quantum Theory
Temperature
Tunneling
title Deuterium Enrichment of Interstellar Methanol Explained by Atom Tunneling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T02%3A18%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deuterium%20Enrichment%20of%20Interstellar%20Methanol%20Explained%20by%20Atom%20Tunneling&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Goumans,%20T.%20P.%20M&rft.date=2011-10-06&rft.volume=115&rft.issue=39&rft.spage=10767&rft.epage=10774&rft.pages=10767-10774&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/jp206048f&rft_dat=%3Cproquest_cross%3E1753521590%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1529945354&rft_id=info:pmid/21866902&rfr_iscdi=true