Validating TrueAllele® DNA Mixture Interpretation
: DNA mixtures with two or more contributors are a prevalent form of biological evidence. Mixture interpretation is complicated by the possibility of different genotype combinations that can explain the short tandem repeat (STR) data. Current human review simplifies this interpretation by applying...
Gespeichert in:
Veröffentlicht in: | Journal of forensic sciences 2011-11, Vol.56 (6), p.1430-1447 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1447 |
---|---|
container_issue | 6 |
container_start_page | 1430 |
container_title | Journal of forensic sciences |
container_volume | 56 |
creator | Perlin, Mark W. Legler, Matthew M. Spencer, Cara E. Smith, Jessica L. Allan, William P. Belrose, Jamie L. Duceman, Barry W. |
description | : DNA mixtures with two or more contributors are a prevalent form of biological evidence. Mixture interpretation is complicated by the possibility of different genotype combinations that can explain the short tandem repeat (STR) data. Current human review simplifies this interpretation by applying thresholds to qualitatively treat STR data peaks as all‐or‐none events and assigning allele pairs equal likelihood. Computer review, however, can work instead with all the quantitative data to preserve more identification information. The present study examined the extent to which quantitative computer interpretation could elicit more identification information than human review from the same adjudicated two‐person mixture data. The base 10 logarithm of a DNA match statistic is a standard information measure that permits such a comparison. On eight mixtures having two unknown contributors, we found that quantitative computer interpretation gave an average information increase of 6.24 log units (min = 2.32, max = 10.49) over qualitative human review. On eight other mixtures with a known victim reference and one unknown contributor, quantitative interpretation averaged a 4.67 log factor increase (min = 1.00, max = 11.31) over qualitative review. This study provides a general treatment of DNA interpretation methods (including mixtures) that encompasses both quantitative and qualitative review. Validation methods are introduced that can assess the efficacy and reproducibility of any DNA interpretation method. An in‐depth case example highlights 10 reasons (at 10 different loci) why quantitative probability modeling preserves more identification information than qualitative threshold methods. The results validate TrueAllele® DNA mixture interpretation and establish a significant information improvement over human review. |
doi_str_mv | 10.1111/j.1556-4029.2011.01859.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901643139</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2511360861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5279-5bd789e0d261a66600521561b508d74059513accdf0da62d775f2f2220768a353</originalsourceid><addsrcrecordid>eNqNkM9u1DAQh62qqF0Kr4AieugpYcaO_x04rFq2FJWtKi3laHkTp8o2m2ztRGxfiofgyXC6ZQ9ISMzFI_n7zYw-QhKEDGN9WGXIuUhzoDqjgJgBKq6z7QGZ7D8OyQSA0hRRq2PyOoQVAAgUeESOKSoqc64mhN7Zpi5tX7f3ycIPbto0rnG_fiYX82nytd72g3fJVds7v_Guj1zXviGvKtsE9_blPSHfZp8W55_T65vLq_PpdVpwKnXKl6VU2kFJBVohBACnyAUuOahS5sA1R2aLoqygtIKWUvKKVpRSkEJZxtkJOdvN3fjucXChN-s6FK5pbOu6IRgNKHKGTEfy_V_kqht8G4-LEFOayWfo9F8QZSpepnM1LlU7qvBdCN5VZuPrtfVPBsGM7s3KjIrNqNiM7s2ze7ON0XcvC4bl2pX74B_ZEfi4A37UjXv678Hmy-xm7GI-3eXr0LvtPm_9gxGSSW6-zy_NjN7O89s7bhbsN1VEng4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2381569485</pqid></control><display><type>article</type><title>Validating TrueAllele® DNA Mixture Interpretation</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Perlin, Mark W. ; Legler, Matthew M. ; Spencer, Cara E. ; Smith, Jessica L. ; Allan, William P. ; Belrose, Jamie L. ; Duceman, Barry W.</creator><creatorcontrib>Perlin, Mark W. ; Legler, Matthew M. ; Spencer, Cara E. ; Smith, Jessica L. ; Allan, William P. ; Belrose, Jamie L. ; Duceman, Barry W.</creatorcontrib><description>: DNA mixtures with two or more contributors are a prevalent form of biological evidence. Mixture interpretation is complicated by the possibility of different genotype combinations that can explain the short tandem repeat (STR) data. Current human review simplifies this interpretation by applying thresholds to qualitatively treat STR data peaks as all‐or‐none events and assigning allele pairs equal likelihood. Computer review, however, can work instead with all the quantitative data to preserve more identification information. The present study examined the extent to which quantitative computer interpretation could elicit more identification information than human review from the same adjudicated two‐person mixture data. The base 10 logarithm of a DNA match statistic is a standard information measure that permits such a comparison. On eight mixtures having two unknown contributors, we found that quantitative computer interpretation gave an average information increase of 6.24 log units (min = 2.32, max = 10.49) over qualitative human review. On eight other mixtures with a known victim reference and one unknown contributor, quantitative interpretation averaged a 4.67 log factor increase (min = 1.00, max = 11.31) over qualitative review. This study provides a general treatment of DNA interpretation methods (including mixtures) that encompasses both quantitative and qualitative review. Validation methods are introduced that can assess the efficacy and reproducibility of any DNA interpretation method. An in‐depth case example highlights 10 reasons (at 10 different loci) why quantitative probability modeling preserves more identification information than qualitative threshold methods. The results validate TrueAllele® DNA mixture interpretation and establish a significant information improvement over human review.</description><identifier>ISSN: 0022-1198</identifier><identifier>EISSN: 1556-4029</identifier><identifier>DOI: 10.1111/j.1556-4029.2011.01859.x</identifier><identifier>PMID: 21827458</identifier><identifier>CODEN: JFSCAS</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Alleles ; Bayes Theorem ; Bayesian model ; Case depth ; Deoxyribonucleic acid ; DNA ; DNA - genetics ; DNA Fingerprinting ; DNA fingerprints ; DNA mixture interpretation ; expert system ; Expert systems ; forensic science ; Forensic sciences ; Genotype ; Genotype & phenotype ; Humans ; Identification methods ; Likelihood Functions ; likelihood ratio ; MCMC computation ; Microsatellite Repeats ; Qualitative research ; quantitative data ; Software ; Statistical analysis ; STR analysis ; validation study</subject><ispartof>Journal of forensic sciences, 2011-11, Vol.56 (6), p.1430-1447</ispartof><rights>2011 American Academy of Forensic Sciences</rights><rights>2011 American Academy of Forensic Sciences.</rights><rights>Copyright Wiley Subscription Services, Inc. Nov 2011</rights><rights>Copyright American Society for Testing and Materials Nov 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5279-5bd789e0d261a66600521561b508d74059513accdf0da62d775f2f2220768a353</citedby><cites>FETCH-LOGICAL-c5279-5bd789e0d261a66600521561b508d74059513accdf0da62d775f2f2220768a353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1556-4029.2011.01859.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1556-4029.2011.01859.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21827458$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Perlin, Mark W.</creatorcontrib><creatorcontrib>Legler, Matthew M.</creatorcontrib><creatorcontrib>Spencer, Cara E.</creatorcontrib><creatorcontrib>Smith, Jessica L.</creatorcontrib><creatorcontrib>Allan, William P.</creatorcontrib><creatorcontrib>Belrose, Jamie L.</creatorcontrib><creatorcontrib>Duceman, Barry W.</creatorcontrib><title>Validating TrueAllele® DNA Mixture Interpretation</title><title>Journal of forensic sciences</title><addtitle>J Forensic Sci</addtitle><description>: DNA mixtures with two or more contributors are a prevalent form of biological evidence. Mixture interpretation is complicated by the possibility of different genotype combinations that can explain the short tandem repeat (STR) data. Current human review simplifies this interpretation by applying thresholds to qualitatively treat STR data peaks as all‐or‐none events and assigning allele pairs equal likelihood. Computer review, however, can work instead with all the quantitative data to preserve more identification information. The present study examined the extent to which quantitative computer interpretation could elicit more identification information than human review from the same adjudicated two‐person mixture data. The base 10 logarithm of a DNA match statistic is a standard information measure that permits such a comparison. On eight mixtures having two unknown contributors, we found that quantitative computer interpretation gave an average information increase of 6.24 log units (min = 2.32, max = 10.49) over qualitative human review. On eight other mixtures with a known victim reference and one unknown contributor, quantitative interpretation averaged a 4.67 log factor increase (min = 1.00, max = 11.31) over qualitative review. This study provides a general treatment of DNA interpretation methods (including mixtures) that encompasses both quantitative and qualitative review. Validation methods are introduced that can assess the efficacy and reproducibility of any DNA interpretation method. An in‐depth case example highlights 10 reasons (at 10 different loci) why quantitative probability modeling preserves more identification information than qualitative threshold methods. The results validate TrueAllele® DNA mixture interpretation and establish a significant information improvement over human review.</description><subject>Alleles</subject><subject>Bayes Theorem</subject><subject>Bayesian model</subject><subject>Case depth</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - genetics</subject><subject>DNA Fingerprinting</subject><subject>DNA fingerprints</subject><subject>DNA mixture interpretation</subject><subject>expert system</subject><subject>Expert systems</subject><subject>forensic science</subject><subject>Forensic sciences</subject><subject>Genotype</subject><subject>Genotype & phenotype</subject><subject>Humans</subject><subject>Identification methods</subject><subject>Likelihood Functions</subject><subject>likelihood ratio</subject><subject>MCMC computation</subject><subject>Microsatellite Repeats</subject><subject>Qualitative research</subject><subject>quantitative data</subject><subject>Software</subject><subject>Statistical analysis</subject><subject>STR analysis</subject><subject>validation study</subject><issn>0022-1198</issn><issn>1556-4029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkM9u1DAQh62qqF0Kr4AieugpYcaO_x04rFq2FJWtKi3laHkTp8o2m2ztRGxfiofgyXC6ZQ9ISMzFI_n7zYw-QhKEDGN9WGXIuUhzoDqjgJgBKq6z7QGZ7D8OyQSA0hRRq2PyOoQVAAgUeESOKSoqc64mhN7Zpi5tX7f3ycIPbto0rnG_fiYX82nytd72g3fJVds7v_Guj1zXviGvKtsE9_blPSHfZp8W55_T65vLq_PpdVpwKnXKl6VU2kFJBVohBACnyAUuOahS5sA1R2aLoqygtIKWUvKKVpRSkEJZxtkJOdvN3fjucXChN-s6FK5pbOu6IRgNKHKGTEfy_V_kqht8G4-LEFOayWfo9F8QZSpepnM1LlU7qvBdCN5VZuPrtfVPBsGM7s3KjIrNqNiM7s2ze7ON0XcvC4bl2pX74B_ZEfi4A37UjXv678Hmy-xm7GI-3eXr0LvtPm_9gxGSSW6-zy_NjN7O89s7bhbsN1VEng4</recordid><startdate>201111</startdate><enddate>201111</enddate><creator>Perlin, Mark W.</creator><creator>Legler, Matthew M.</creator><creator>Spencer, Cara E.</creator><creator>Smith, Jessica L.</creator><creator>Allan, William P.</creator><creator>Belrose, Jamie L.</creator><creator>Duceman, Barry W.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K7.</scope><scope>7X8</scope></search><sort><creationdate>201111</creationdate><title>Validating TrueAllele® DNA Mixture Interpretation</title><author>Perlin, Mark W. ; Legler, Matthew M. ; Spencer, Cara E. ; Smith, Jessica L. ; Allan, William P. ; Belrose, Jamie L. ; Duceman, Barry W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5279-5bd789e0d261a66600521561b508d74059513accdf0da62d775f2f2220768a353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Alleles</topic><topic>Bayes Theorem</topic><topic>Bayesian model</topic><topic>Case depth</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - genetics</topic><topic>DNA Fingerprinting</topic><topic>DNA fingerprints</topic><topic>DNA mixture interpretation</topic><topic>expert system</topic><topic>Expert systems</topic><topic>forensic science</topic><topic>Forensic sciences</topic><topic>Genotype</topic><topic>Genotype & phenotype</topic><topic>Humans</topic><topic>Identification methods</topic><topic>Likelihood Functions</topic><topic>likelihood ratio</topic><topic>MCMC computation</topic><topic>Microsatellite Repeats</topic><topic>Qualitative research</topic><topic>quantitative data</topic><topic>Software</topic><topic>Statistical analysis</topic><topic>STR analysis</topic><topic>validation study</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perlin, Mark W.</creatorcontrib><creatorcontrib>Legler, Matthew M.</creatorcontrib><creatorcontrib>Spencer, Cara E.</creatorcontrib><creatorcontrib>Smith, Jessica L.</creatorcontrib><creatorcontrib>Allan, William P.</creatorcontrib><creatorcontrib>Belrose, Jamie L.</creatorcontrib><creatorcontrib>Duceman, Barry W.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Criminal Justice (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of forensic sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perlin, Mark W.</au><au>Legler, Matthew M.</au><au>Spencer, Cara E.</au><au>Smith, Jessica L.</au><au>Allan, William P.</au><au>Belrose, Jamie L.</au><au>Duceman, Barry W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Validating TrueAllele® DNA Mixture Interpretation</atitle><jtitle>Journal of forensic sciences</jtitle><addtitle>J Forensic Sci</addtitle><date>2011-11</date><risdate>2011</risdate><volume>56</volume><issue>6</issue><spage>1430</spage><epage>1447</epage><pages>1430-1447</pages><issn>0022-1198</issn><eissn>1556-4029</eissn><coden>JFSCAS</coden><abstract>: DNA mixtures with two or more contributors are a prevalent form of biological evidence. Mixture interpretation is complicated by the possibility of different genotype combinations that can explain the short tandem repeat (STR) data. Current human review simplifies this interpretation by applying thresholds to qualitatively treat STR data peaks as all‐or‐none events and assigning allele pairs equal likelihood. Computer review, however, can work instead with all the quantitative data to preserve more identification information. The present study examined the extent to which quantitative computer interpretation could elicit more identification information than human review from the same adjudicated two‐person mixture data. The base 10 logarithm of a DNA match statistic is a standard information measure that permits such a comparison. On eight mixtures having two unknown contributors, we found that quantitative computer interpretation gave an average information increase of 6.24 log units (min = 2.32, max = 10.49) over qualitative human review. On eight other mixtures with a known victim reference and one unknown contributor, quantitative interpretation averaged a 4.67 log factor increase (min = 1.00, max = 11.31) over qualitative review. This study provides a general treatment of DNA interpretation methods (including mixtures) that encompasses both quantitative and qualitative review. Validation methods are introduced that can assess the efficacy and reproducibility of any DNA interpretation method. An in‐depth case example highlights 10 reasons (at 10 different loci) why quantitative probability modeling preserves more identification information than qualitative threshold methods. The results validate TrueAllele® DNA mixture interpretation and establish a significant information improvement over human review.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>21827458</pmid><doi>10.1111/j.1556-4029.2011.01859.x</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1198 |
ispartof | Journal of forensic sciences, 2011-11, Vol.56 (6), p.1430-1447 |
issn | 0022-1198 1556-4029 |
language | eng |
recordid | cdi_proquest_miscellaneous_901643139 |
source | MEDLINE; Wiley Online Library All Journals |
subjects | Alleles Bayes Theorem Bayesian model Case depth Deoxyribonucleic acid DNA DNA - genetics DNA Fingerprinting DNA fingerprints DNA mixture interpretation expert system Expert systems forensic science Forensic sciences Genotype Genotype & phenotype Humans Identification methods Likelihood Functions likelihood ratio MCMC computation Microsatellite Repeats Qualitative research quantitative data Software Statistical analysis STR analysis validation study |
title | Validating TrueAllele® DNA Mixture Interpretation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T13%3A35%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Validating%20TrueAllele%C2%AE%20DNA%20Mixture%20Interpretation&rft.jtitle=Journal%20of%20forensic%20sciences&rft.au=Perlin,%20Mark%20W.&rft.date=2011-11&rft.volume=56&rft.issue=6&rft.spage=1430&rft.epage=1447&rft.pages=1430-1447&rft.issn=0022-1198&rft.eissn=1556-4029&rft.coden=JFSCAS&rft_id=info:doi/10.1111/j.1556-4029.2011.01859.x&rft_dat=%3Cproquest_cross%3E2511360861%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2381569485&rft_id=info:pmid/21827458&rfr_iscdi=true |